Функции клеточного включения в клетке

Содержание
  1. Эндоплазматическая сеть. Аппарат Гольджи. Лизосомы. Клеточные включения
  2. Аппарат Гольджи = комплекс Гольджи
  3. Лизосомы
  4. Клеточные включения
  5. Конспект
  6. Строение и функции клетки
  7. Структура и функции мембран клетки
  8.  Цитоплазма
  9.  Строение и функции клеточного ядра
  10. Клеточные включения: строение и функции, медицинское и биологическое значение
  11. Что относится к клеточным включениям, какова их роль в клетке?
  12. Строение и функции
  13. Биологическое и медицинское значение клеточных включений
  14. Что такое клеточные включения? Клеточные включения: типы, строение и функции
  15. Что такое клеточные включения?
  16. Как они построены?
  17. Клеточные включения: функции
  18. Включения растительных клеток
  19. Функции клеточного включения в клетке
  20. 2. Общий план строения прокариотической клетки
  21. 3. Общий план строения эукариотической клетки
  22. Как они построены?
  23. Классификация
  24. Клеточные включения: функции
  25. Включения животных клеток
  26. Включения растительных клеток

Эндоплазматическая сеть. Аппарат Гольджи. Лизосомы. Клеточные включения

Функции клеточного включения в клетке

ЭПС – мембранное образование, которое по внешнему виду напоминает лабиринт, пронизывающий примерно половину пространства клетки. Эндоплазматическая сеть состоит из мембраны, эта сеть оплетает ядро и располагается дальше в цитоплазме, однако ретикулум замкнут из выходов в саму цитозоль не имеет.

Эндоплазматическая сеть есть двух видов: гладкая и шероховатая, она же гранулярная. На поверхностях ЭПС идет синтез двух вещей: белки и углеводы с липидами на пару. На поверхности шероховатой ЭПС синтезируются белки. Как было описано ранее, этим занимаются рибосомы, которых здесь множество. А на гладкой ЭПС – углеводы и липиды.

Для того чтобы не путать попробуйте придумать ассоциации. Мне помогает вот что: липиды и углеводы – источники энергии в клетке и организме в целом. Мы их потребляем в пищу, они проходят по множеству трубок: пищевод, толстый и тонкий кишечник.

Естественно, эти структуры не абсолютно гладкие, у тонкого кишечника внутренняя поверхность выстлана ресничками, а у толстого есть гаустры, но сама ассоциации трубки, источников энергии (углеводов и липидов) и гладкости помогают мне запомнить. Шероховатая ЭПС ассоциируется у меня с наждачной бумагой, на которой задерживаются частицы чего-либо.

Такая бумага, в моем восприятии, усеяна множеством шариков, которые и являются рибосомами, синтезирующими белки.

Конечно, клетка, специализирующаяся на синтезе белков будет иметь преимущественно гранулярную ЭПС, а клетка, синтезирующая углеводы и липиды, будет хорошо развитую гладкую ЭПС.

После синтеза необходимых соединений на мембранах ретикулума, вещества должны попасть к местам своего использования клеткой. Не случайно ЭПС имеет такую лабиринтообразную структуру.

Это как метро: с мембран = станций метро соединения = пассажиры заходят в вагоны=трубочки ЭПС и отправляются тука, куда им нужно.

[attention type=yellow]

Люди – по делам, а липиды, углеводы и белки – на биохимические реакции или для сохранения как ресурса.

[/attention]

Строение и расположение в клетке эндоплазматической сети

Аппарат Гольджи = комплекс Гольджи

Аппарат Гольджи обязан своему открытию и названию итальянскому гистологу Камилло Гольджи. Этот человек первым открыл уникальное окрашивание препаратов нервной ткани, что внесло большой вклад в развитие гистологии и физиологии 19-20 века. Камилло Гольджи в 1906 году получил Нобелевскую премию по физиологии и медицине.

Аппарат Гольджи представляет из себя систему цистерн, предназначенных для хранения веществ клеткой. Это как большая логистическая система. В цистернах аппарата Гольджи соединения могут быть подвержены модификации, упаковке в мембранные пузырьки, а затем транспорту в этих пузырьках в пункты назначения в цитоплазме или отбраковке, то есть выводу за пределы клетки.

Вполне логично разместить такой органоид клетки рядом с ЭПС, ведь ретикулум занимается синтезом, а аппарат Гольджи – транспортом и упаковкой. Так как Эндоплазматическая сеть – структура замкнутая, то для попадания соединений в аппарат Гольджи используются мембранные пузырьки. Они отшнуровываются от ЭПС, а оптом сливаются с комплексом Гольджи.

Так как в аппарат Гольджи поступают липиды, которые здесь же накапливаются, то эта структура занимается и «ремонтом клетки». Внутри комплекса Гольджи собирается участок мембраны, которые заключается в мембранный пузырек, а потом кусочек мембраны замещает поврежденный фрагмент.

Еще аппарат Гольджи производит лизосомы – мембранные пузырьки с ферментами. Речь об этих структурах пойдет дальше.

Строение и расположение аппарата Гольджи

Лизосомы

Лизосомы представляют из себя не просто мембранные пузырьки, они наполнены пищеварительными ферментами, способными расщепить сложные соединения до более простых, подходящих клетке.

При описании клеточной мембраны упоминалось, что она пластична, в связи с этим способная к фаго-, пино — и экзоцитозу. Когда твердая частица захватывается клеткой, то частица обволакивается мембраной, получается фагосома.

Если эта частица вводится в клетку для питания, то фагосома сливается с лизосомой, а ферменты лизосомы расщепляют содержимое пузырька.

До слияния фагосомы и лизосомы ферменты внутри лизосомы неактивны, ведь если бы они находились в активированном состоянии, то они бы переварили и мембрану лизосомы.

Как уже говорилось ранее, лизосомы формируются в аппарате Гольджи.

Роль лизосом в жизни клетки

Клеточные включения

Клеточные включения не являются органоидами, они используются органоидами для процессов жизнедеятельности. Это просто какие-либо частички на периферии клетки, в ее цитоплазме. Часто это зерна гликогена (у животных) и крахмала (у растений), ведь в виде этих соединений запасается энергия. Также клеточные включения могут быть белками и каплями жира.

Гликоген в клетках печени Крахмал в клетках картофеля Капли жира в клетках авокадо

Источник: https://spadilo.ru/endoplazmaticheskaya-set-apparat-goldzhi-lizosomy-kletochnye-vklyucheniya/

Конспект

Функции клеточного включения в клетке

Раздел ЕГЭ: 2.4. Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки — основа ее целостности.

Строение и функции клетки

Клетка представляет собой элементарную систему биополимеров, ограниченных мембраной, образующих основные структурные компоненты — оболочку, цитоплазму и ядро, обеспечивающих метаболические процессы и осуществляющих поддержание и воспроизведение всей системы. Это элементарная структурно-функциональная и генетическая единица живого.

Ранее изученная информация о строении и функции клеток в 6-9 классах:

Структура и функции мембран клетки

Биологическая мембрана образована билипидным слоем жидких фосфолипидов. Молекулы липидов гидрофильными концами обращены наружу, а гидрофобными — друг к другу. Белковые молекулы могут находиться на поверхностях липидов (периферические белки), пронизывать один слой (полуинтегралъные) и оба слоя (интегральные) липидов.

Липиды и белки удерживаются гидрофильно-гидрофобными взаимодействиями. На поверхности мембран располагается гликокачикс — разветвленные гликопротеиновые структуры, которые обеспечивают рецепторную функцию и взаимосвязь клеток многоклеточного организма. Свойства: пластичность; способность к самозамыканию: избирательная проницаемость.

 Функции: структурная; регуляторная; защитная; рецепторная; ферментативная; разграничительная.

Плазмалемма — цитоплазматическая мембрана, покрывающая клетку. На наружной поверхности мембраны имеется гликокаликс. У животных клеток она может быть покрыта муцином, слизью, хитином; у растений — целлюлозой, лигнином. Функции: барьерная; регуляторная; рецепторная; структурная.

Эндоцитоз — поступление веществ в клетку. Способы поступления веществ в клетку:

  • простая диффузия — поступление в клетку ионов и мелких молекул через плазмалемму по градиенту концентрации без затрат энергии;
  • осмос — поступление в клетку растворителя (воды) по градиенту концентрации без затрат энергии;
  • облегченная диффузия — перемещение веществ с участием белков-переносчиков (пермеаз) по градиенту концентрации без затрат энергии (некоторые аминокислоты);
  • активный транспорт — перемещение веществ против градиента концентрации с помощью транспортных белков — поринов и АТФ-аз с затратой энергии (так в клетку поступают ионы Са2+ и Mg2+, моносахариды, аминокислоты);
  • фагоцитоз — поступление в клетку крупных молекул и частиц; при этом мембрана клетки окружает частицу, края ее смыкаются и частица поступает в цитоплазму в мембранном пузырьке — эндосоме (идет с затратой энергии);
  • пиноцитоз — поступление в клетку капелек жидкости аналогично фагоцитозу.

Экзоцитоз — выведение из клетки веществ (гормонов, белков, капель жира), заключенных в мембранные пузырьки.

 Цитоплазма

Цитоплазма состоит из воды (85%), белков (10%), органических и минеральных соединений (остальной объем). В цитоплазме различают гиалоплазму, цитоскелет, органеллы и включения.

Гиалоплазма. Представляет собой коллоидный раствор, обеспечивающий вязкость, эластичность, сократимость и движение цитоплазмы, в котором протекают реакции внутриклеточного метаболизма. Является внутренней средой клетки, где протекают реакции внутриклеточного обмена.

Цитоскелет. Образован развитой сетью белковых нитей — филаментов. Представлен микротрубочками, микрофиламентами и промежуточными филаментами.

Микротрубочки — тонкие трубочки диаметром около 24 нм, толщина их стенки около 5 нм, образованы белком тубулином. Образуют веретено деления, входят в состав жгутиков и ресничек, располагаются в цитоплазме клеток. Обеспечивают расхождение дочерних хромосом в анафазах митоза и мейоза, движение жгутиков и ресничек, перемещение органелл и придают форму клетке.

Микрофиламенты — очень тонкие белковые нити диаметром около 6 нм, образованы преимущественно белком актином. Они переплетаются и образуют густую сеть в цитоплазме. Обеспечивают двигательную активность гиалоплазмы, участвуют в эндо- и экзоцитозе.

Промежуточные филаменты — диаметр их около 10 нм, образованы молекулами разных фибриллярных белков (цитокератин и др.). Выполняют опорную функцию.

 Органеллы клетки. Это постоянные структурные компоненты цитоплазмы клетки, имеющие определенное строение и выполняющие определенные функции. Большинство органелл имеют мембранное строение, мембраны отсутствуют в структуре рибосом и центриолей.

Органеллы общего назначения имеются в большинстве клеток (эндоплазматическая сеть, митохондрии, комплекс Гольджи и др.); специального назначения содержатся только в специализированных клетках (жгутики, реснички, пульсирующие вакуоли, миофибриллы и др.).

 Эндоплазматическая сеть (ЭПС) — это система каналов, образованных биологическими мембранами и пронизывающих гиалоплазму. Каналы ЭПС соединены с перинуклеарным пространством.

Имеется гладкая ЭПС и гранулярная — на ее мембранах расположены рибосомы.

Участвует в транспорте веществ, синтезированных в клетке и поступивших извне; делении цитоплазмы на отсеки; синтезе жиров и углеводов (агранулярная функция) и белков (гранулярная функция).

Рибосомы — сферические тельца диаметром 15-35 нм, состоящие из большой и малой субъединиц, построены из белка и рРНК. Располагаются на мембранах ЭПС, на наружной ядерной мембране, в цитоплазме. Непосредственно участвуют в сборке молекул белков (трансляция).

 Митохондрии содержат две мембраны, наружную — гладкую и внутреннюю, которая образует выросты внутрь матрикса (гомогенного содержимого) — кристы. В матриксе располагаются кольцевые молекулы ДНК и рибосомы, а на кристах — АТФ-сомы (грибовидные тела). Участвует в кислородном этапе энергетического обмена; синтезе АТФ и специфических белков.

Комплекс (аппарат) Гольджи образован комплексом биологических мембран в виде узких каналов, расширяющихся на концах в цистерны, от которых отпочковываются пузырьки, способные превращаться в вакуоли. Участвует в концентрации, обезвоживании, уплотнении и упаковке веществ; образовании первичных лизосом; сборке комплексных органических соединений (липопротеинов, гликолипидов и др.).

Лизосомы — шаровидные тельца, ограниченные биологической мембраной, диаметром 0,2-1 мкм. Внутри содержится около 40 гидролитических ферментов. Расщепляют пищевые вещества и бактерии, поступившие в клетку (гетерофагия); разрушают временные органы эмбрионов, личинок и отмирающие структуры (аутофагия).

 Пластиды — органоиды, содержащиеся только в растительных клетках. Имеют размеры 5-10 мкм. Их стенка образована двумя мембранами, между которыми располагается строма, пронизанная параллельно расположенными мембранами — тилакоидами. В отдельных участках тилакоидов находятся замкнутые полости (граны). В строме есть ДНК и рибосомы.

Хлоропласты в гранах содержат хлорофилл. В них происходит фотосинтез и синтез специфических белков.

[attention type=red]

Хромопласты построены сходно с хлоропластами. Содержат пигменты — каротиноиды, придающие окраску цветкам и плодам.

[/attention]

Лейкопласты имеют сходное с хлоропластами строение. Не содержат пигментов. В них происходит синтез и накопление белков, жиров и углеводов.

 Центросома (клеточный центр) — органоид, содержащийся вблизи ядра клетки. Представлен двумя центриолями, окруженными центросферой. Цилиндрические центриоли образованы 27 микротрубочками, сгруппированными по три; центриоли расположены перпендикулярно друг к другу. Образует полюса и веретено деления при митозе и мейозе.

 Вакуоли представляют собой участки гиалоплазмы, ограниченные элементарной мембраной. У растений содержат клеточный сок и поддерживают тургорное давление; у протистов выполняют пищеварительную и выделительную функции.

 Органеллы движения — это жгутики и реснички. Содержат по 20 микротрубочек, образующих девять пар по периферии и две одиночные в центре, покрыты элементарной мембраной.

У основания находятся базальные тельца, образующие микротрубочки. Обеспечивают движение протистов, бактерий, сперматозоидов и ресничных червей.

В дыхательных путях служат для удаления попавших инородных частиц.

 Включения. Это непостоянные компоненты цитоплазмы клетки, не выполняющие непосредственных функций в клетке, содержание которых изменяется в зависимости от функционального состояния клетки.

Трофические включения — запасы питательных веществ в клетке. В растительных клетках — это преимущественно крахмал и белки; в животных — гликоген и жир.

 Секреторные включения представляют собой продукты жизнедеятельности клеток желез внешней и внутренней секреции. К ним относятся ферменты, гормоны, слизь, подлежащие выведению из клетки.

 Экскреторные включения являются продуктами обмена веществ (кристаллы щавелевой кислоты, щавелевокислого кальция и др.).

 Строение и функции клеточного ядра

Клеточное ядро обязательный компонент всех эукариотических клеток. Содержит кариолемму (ядерную оболочку), кариоплазму (ядерный сок), хроматин и ядрышки.

Кариолемма представлена двумя биологическими мембранами; наружная ядерная мембрана непосредственно переходит в мембраны ЭПС; на ней имеются рибосомы. Между мембранами находится перинуклеарное пространство, сообщающееся с каналами ЭПС. В мембранах есть поры. Обеспечивает регуляцию обмена веществ между ядром и цитоплазмой.

Кариоплазма состоит из воды, минеральных солей, белков (ферментов), нуклеотидов, АТФ и различных видов РНК. Обеспечивает взаимосвязи между ядерными структурами.

 Хроматин образован дезоксинуклеопротеином (ДНП), содержащим молекулы ДНК, белки-гистоны и иРНК. Это деспирализованные хромосомы, образующие гранулы и глыбки. В профазах митоза и мейоза хроматин, спирализуясь, образует хромосомы.

Метафазные хромосомы состоят из двух продольных нитей ДНП — хроматид, соединенных друг с другом в области центромеры (первичной перетяжки). Центромера делит тело хромосомы на два плеча. Некоторые хромосомы имеют вторичную перетяжку, отделяющую от плеча спутник. На конце плеча имеются теломеры, препятствующие соединению разных хромосом.

Типы хромосом:

  • метацентрические — равноплечие;
  • субметацентрические — неравноплечие;
  • акроцентрические — одно плечо очень короткое.

 Ядрышки — шарообразные, не окруженные мембраной образования, состоящие из белков, рРНК и небольшого количества ДНК. Непостоянны. Образуются в области вторичных перетяжек хромосом (ядрышковых организаторов). В них формируются субъединицы рибосом.

Таблица «Строение и функции клетки».

Это конспект по теме «Строение и функции клетки». Выберите дальнейшие действия:

Источник: https://uchitel.pro/%D1%81%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B8-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8-%D0%BA%D0%BB%D0%B5%D1%82%D0%BA%D0%B8/

Клеточные включения: строение и функции, медицинское и биологическое значение

Функции клеточного включения в клетке

Вместе с мембранными и немембранными органеллами в цитоплазме находятся клеточные включения, которые являются непостоянными элементами клетки. Они появляются и исчезают на протяжении ее жизненного цикла.

Что относится к клеточным включениям, какова их роль в клетке?

По сути включения — это продукты метаболизма, способные накапливаться в виде гранул, зерен или капель с разной химической структурой. Редко могут встречаться в ядре.

Формируются они в основном в пластинчатом комплексе и в эндоплазматическом ретикулуме. Часть — результат неполного переваривания (гемосидерин).

Процесс расщепления и удаления зависит от происхождения. Секреторные включения выводятся через протоки, углеводные и липидные — расщепляются под действием ферментов, меланин разрушается клетками Лангерганса.

Классификация клеточных включений:

  • Трофические (крахмал, гликоген, липиды);
  • секреторные (включения поджелудочной железы, эндокринных органов);
  • экскреторные (гранулы мочевой кислоты);
  • пигментные (меланин, билирубин);
  • случайные (медикаменты, кремний);
  • минеральные (соли кальция).

Строение и функции

Жировые включения часто накапливаются в цитоплазме, как небольшие капли. Они характерны для одноклеточных, к примеру, инфузорий. У высших животных липидные капли находятся в жировой ткани. Чрезмерное накопление жировых включений приводит к патологическим изменениям в органах, к примеру, вызывает жировую дистрофию печени.

Полисахаридные имеют гранулярное строение различной формы и размеров. Наибольшие их скопления располагаются в клетках поперечнополосатой мускулатуры и печеночной ткани.

Разновидности включений

Включения белка встречаются не часто, главным образом являются питательным веществом в яйцеклетках (при микроскопическом исследовании можно увидеть разного рода пластинки, палочки).

Пигмент липофусцин — это включения желтого или коричневого цвета, которые скапливаются в клетках в процессе жизнедеятельности. Пигмент гемоглобин входит в состав эритроцитов крови. Родопсин — делает палочки сетчатки глаза чувствительными к свету.

Строение и функции клеточных включений
ГруппаХарактеристика
ТрофическиеСюда относят белки, жиры и углеводы. В клетках животных, особенно в печени и мышечных волокнах, находится гликоген. При нагрузках и потреблении большого количества энергии он используется в первую очередь. У растений накапливается крахмал, как основной источник питания.
ЭкскреторныеЭто продукты метаболизма клетки, которые не были из нее удалены. Сюда также относят чужеродных агентов, проникших во внутриклеточное пространство. Такие включения поглощаются и перерабатываются лизосомами.
СекреторныеИх синтез идет в специальных клетках, а после они выводятся наружу через протоки или с током лимфы и крови. К секреторной группе относятся гормоны.
ПигментныеИногда представлены продуктами обмена: гранулы липофусцина или скопления гемосидерина. Находятся в меланоцитах, клетках имеющих окрас. Выполняют защитную функцию, предотвращая действие солнечных лучей. У простейших видов меланоциты находятся во многих органах, что придает животным различную окраску. У человека основная масса пигментных клеток находится в эпидермисе, часть в радужке глаза.
СлучайныеВстречаются в клетках, способных к фагоцитозу. Захваченные бактерии, которые плохо перевариваются, остаются в цитоплазме в виде гранул.
МинеральныеСюда относятся соли Ca, которые откладываются при снижении активной деятельности органа. Нарушение метаболизма иона приводит также к накоплению солей в матриксе митохондрий.

Биологическое и медицинское значение клеточных включений

Избыточное скопление включений может привести к развитию серьезных патологий, которые принято называть болезнями накопления. Формирование заболевания связано со снижением активности лизосомальных ферментов и чрезмерным поступлением каких-либо веществ (жировое перерождение печени, гликогенозмышечной ткани).

Например, развитие наследственной болезни Помпе обусловлено дефицитом фермента кислая мальтаза, как следствие в клетках накаливается гликоген, что ведет к дистрофии нервной и мышечной ткани.

Скапливаться в цитоплазме могут свойственные для клетки вещества, а также чужеродные, которые в норме не встречаются (амилоидоз почек). Во время старения организма во всех клетках накапливается липофусцин, который служит маркером функциональной неполноценности клеток.

Чем отличаются органоиды от клеточных включений?

Органоиды — это постоянные структурные элементы клетки, необходимые для стабильной работы и жизнедеятельности.

Включения — это компоненты клетки, которые могут появляться и исчезать на протяжении ее жизни.

Оцените, пожалуйста, статью. Мы старались:) (8 4,88 из 5)
Загрузка…

Источник: https://animals-world.ru/kletochnye-vklyucheniya-stroenie-i-funkcii-medicinskoe-i-biologicheskoe-znachenie/

Что такое клеточные включения? Клеточные включения: типы, строение и функции

Функции клеточного включения в клетке

Помимо органоидов, в клетках присутствуют клеточные включения. Они могут содержаться не только в цитоплазме, но и в некоторых органоидах, таких как митохондрии и пластиды.

Что такое клеточные включения?

Это образования, которые не носят постоянный характер. В отличии от органоидов, они не такие стабильные. Кроме того, они имеют намного более простую структуру и выполняют пассивные функции, такие как, например, резервная.

Как они построены?

Большинство из них обладает каплеобразной формой, однако некоторые могут быть и другими, например, похожими на кляксу. Что касается размеров, то он может варьироваться. Клеточные включения могут быть как меньше органоидов, так и такими же по размеру или даже больше.

Состоят они в основном из одного конкретного вещества, в большинстве случаев органического. Это может быть как жир, так и углевод или белок.

В зависимости от того, откуда берется вещество, из которого они состоят, существуют следующие типы клеточных включений:

  • экзогенные;
  • эндогенные;
  • вирусные.

Экзогенные клеточные включения построены из химических соединений, которые поступили в клетку извне. Те же, которые сформированы из веществ, вырабатываемых самой клеткой, называются эндогенными. Вирусные включения хоть и синтезируются самой клеткой, однако это происходит в результате попадания в нее ДНК вируса. Клетка просто принимает ее за свою ДНК и синтезирует из нее белок вируса.

В зависимости от функций, которые выполняют клеточные включения, они делятся на пигментные, секреторные и трофические.

Далее включения делятся на виды в зависимости от конкретных химических соединений, из которых они состоят.

Клеточные включения: функции

Они могут обладать тремя функциями. Рассмотрим их в таблице

Клеточные включенияФункции
ТрофическиеРезервная. В виде таких включений организм запасает питательные вещества. Их клетка может использовать в экстренных случаях. Содержатся во многих клетках организма.
ПигметныеСформированы из пигментов — веществ яркого цвета. Они обеспечивают клетке определенную окраску. Содержатся только в некоторых клетках организма.
СекреторныеОни построены из ферментов. Присутствуют они только в специализированных клетках. Например, в клетках поджелудочной железы.

Это все функции непостоянных образований в клетке.

В цитоплазме животного содержатся как трофические, так и пигметные включения. В некоторых клетках присутствуют и секреторные.

Трофическими в клетках животных являются включения гликогена. Они обладают формой гранулы размером около 70 нм.

Гликоген является основным резервным веществом животного. В виде данного вещества организм запасает глюкозу. Существует два гормона, которые регулируют обмен глюкозы и глюкогена: инсулин и глюкагон. Они оба вырабатываются поджелудочной железой. Инсулин отвечает за формирование гликогена из глюкозы, а глюкагон, наоборот, участвует в синтезе глюкозы.

Больше всего включений гликогена находится в клетках печени. Также они в большом количестве присутствуют в составе мышц, в том числе и сердечной. Гликогеновые включения клеток печени имеют форму гранул размером около 70 нм. Они собираются в небольшие гроздья. Гликогеновые включения миоцитов (мышечных клеток) обладают округлой формой. Они одиночные, размером чуть больше рибосом.

Также для животных клеток характерны липидные включения. Это тоже трофические включения, благодаря которым организм может получить энергию в экстренном случае. Они состоят из жиров и имеют каплевидную форму.

В основном такие включения содержатся в клетках жировой соединительной ткани — липоцитах. Существует два вида жировой ткани: белая и бурая.

Липоциты белой содержат одну большую каплю жира, клетки бурой — многочисленные мелкие.

Что касается пигментных включений, то для животных клеток характерны те, которые состоят из меланина. Благодаря этому веществу радужка глаза, кожа и другие части организма имеют определенную окраску. Чем больше в клетках меланиновых включений, тем темнее то, что из этих клеток состоит.

Еще один пигмент, который может содержаться в клетках животных, — липофусцин. Это вещество желто-коричневого цвета. Оно накапливается в сердечной мышце и печени по мере старения органов.

Включения растительных клеток

Клеточные включения, строение и функции которых мы рассматриваем, содержатся и в клетках растений.

Главными трофическими включениями в этих организмах являются зерна крахмала. В их виде растения запасают глюкозу. Обычно включения крахмала обладают линзовидной, сферической или яйцевидной формой. Их размер может колебаться в зависимости от вида растения и от органа, в клетках которого они содержатся. Он может составлять от 2 до 100 мкм.

Липидные включения также характерны для растительных клеток. Они являются вторыми по распространенности трофическими включениями. Они обладают сферической формой и тонкой мембраной. Их иногда называют сферосомами.

[attention type=green][attention type=red]

Белковые включения присутствуют только в растительных клетках, для животных они не характерны. Они состоят из простых белков — протеинов. Белковые включения бывают двух видов: алейроновые зерна и белковые тельца.

[/attention][/attention]

Алейроновые зерна могут содержать либо кристаллы, либо просто аморфный белок. Так, первые называют сложными, а вторые — простыми. Простые алейроновые зерна, которые состоят из аморфного белка, встречаются реже.

Что касается пигметных включений, то для растений характерны пластоглобулы. В них накапливаются каротиноиды. Такие включения характерны для пластид.

Клеточные включения, строение и функции которых мы рассматриваем, в большинстве своем состоят из органических химических соединений, однако в растительных клетках есть и такие, которые сформированы из неорганических веществ. Это кристаллы оксалата кальция.

Они присутствуют только в вакуолях клетки. Эти кристаллы могут быть самой разнообразной формы, и зачастую она индивидуальна для определенных видов растений.

Источник: https://FB.ru/article/222835/chto-takoe-kletochnyie-vklyucheniya-kletochnyie-vklyucheniya-tipyi-stroenie-i-funktsii

Функции клеточного включения в клетке

Функции клеточного включения в клетке

1. Основы клеточной теории

2. Общий план строения прокариотической клетки

3. Общий план строения эукариотической клетки

1. Основы клеточной теории

Впервые клетку обнаружил и описал Р. Гук (1665). В XIX в. в трудах Т. Шванна, М. Шлейдена были заложены основы клеточной теории строения организмов.

Современную клеточную теорию можно выразить в следующих положениях: все организмы состоят из клеток; клетка является элементарной структурной, генетической и функциональной единицей живого.

Развитие всех организмов начинается с одной клетки, поэтому она является элементарной единицей развития всех организмов. В многоклеточных организмах клетки специализируются на выполнении определенных функций.

В зависимости от структурной организации выделяют следующие формы жизни: доклеточные (вирусы) и клеточные. Среди клеточных форм исходя из особенностей организации клеточного наследственного материала выделяют про- и эукариотические клетки.

Вирусы– это организмы, имеющие очень малые размеры (от 20 до 3000 нм). Их жизнедеятельность может осуществляться только внутри клетки организма хозяина. Тело вируса образовано нуклеиновой кислотой (ДНК или РНК), которая содержится в белковой оболочке – капсиде, иногдакапсид покрыт мембраной.

2. Общий план строения прокариотической клетки

Основные компоненты прокариотической клетки: оболочка, цитоплазма. Оболочка состоит из плазмалеммы и поверхностных структур (клеточная стенка, капсула, слизистый чехол, жгутики, ворсинки).

Плазмалемма имеет толщину 7,5 нм и с наружной части образована слоем белковых молекул, под которым находятся два слоя молекул фосфолипидов, а далее располагается новый слой молекул белка. В плазмалемме имеютсяканалы, выстланные белковыми молекулами, через эти каналы осуществляется транспорт различных веществ, как в клетку, так и из нее.

Основной компонент клеточной стенки – муреин. В него могут быть встроены полисахариды, белки (антигенные свойства), липиды. Придает клетке форму, препятствует ее осмотическому набуханию и разрыву. Через поры легко проникают вода, ионы, мелкие молекулы.

Цитоплазма прокариотической клетки выполняет функцию внутренней среды клетки, в ней находятся рибосомы, мезосомы, включения и молекула ДНК.

Рибосомы – органоиды бобовидной формы, состоят из белка и РНК более мелкие (70S-рибосомы), чем у эукариот. Функция – синтез белка.

Мезосомы – система внутриклеточных мембран образующие складчатые впячивания, содержат ферменты дыхательной цепи (синтез АТФ).

Включения: липиды, гликоген, полифосфаты, белки, запасные питательные вещества

Молекула ДНК. Одна гаплоидная кольцевая двухцепочечная суперконденсированная молекула ДНК. Обеспечивает хранение, передачу генетической информации и регуляцию жизнедеятельности клетки.

3. Общий план строения эукариотической клетки

Типичная клетка эукариот состоит из трех составных частей – оболочки, цитоплазмы и ядра. Основу клеточной оболочки составляетплазмалемма (клеточная мембрана) иуглеводно-белковая поверхностная структура.

1. Плазмалемма эукариот отличается от прокариотической меньшим содержанием белков.

2.Углеводно-белковая поверхностная структура. Животные клетки имеют небольшую белковую прослойку (гликокаликс). У растений поверхностная структура клетки –клеточная стенкасостоит из целлюлозы (клетчатки).

Функции клеточной оболочки: поддерживает форму клетки и придает механическую прочность, защищает клетку, осуществляет узнавание молекулярных сигналов, регулирует обмен веществ между клеткой и средой, осуществляет межклеточное взаимодействие.

Цитоплазма состоит изгиалоплазмы (основное вещество цитоплазмы),органоидов и включений. В гиалоплазме содержатся 3 типа органоидов:

двумембранные (митохондрии, пластиды);

одномембранные (эндоплазматическая сеть (ЭПС), аппарат Гольджи, вакуоли, лизосомы);

[attention type=yellow]

немембранные (клеточный центр, микротрубочки, микрофиламенты, рибосомы, включения).

[/attention]

1. Гиалоплазма представляет собой коллоидный раствор органических и неорганических соединений. Гиалоплазма способна к перемещению внутри клетки – циклозу. Основные функции гиалоплазмы: среда для нахождения органоидов и включений, среда для протекания биохимических и физиологических процессов, объединяет все структуры клетки в единое целое.

2. Митохондрии («энергетические станции клеток»). Наружная мембрана гладкая, внутренняя имеютскладки – кристы. Между внешней и внутренними мембранами находится матрикс. В матриксе митохондрий содержатся молекулы ДНК, мелкие рибосомы и различные вещества.

3. Пластиды характерны для растительных клеток. Различают три вида пластид: хлоропласты, хромопласты и лейкопласты.

I. Хлоропласты – зеленые пластиды, в которых осуществляется фотосинтез. Хлоропласт имеет двухмембранную оболочку. Тело хлоропласта состоит из бесцветногобелково-липидного стромы, пронизанной системой плоских мешочков (тилакоидов) образованных внутренней мембраной.Тилакоиды образуютграны. В строме содержатся рибосомы, крахмальные зерна, молекулы ДНК.

II. Хромопласты придают разным органам растения окраску.

III. Лейкопласты запасают питательные вещества. Из лейкопластов возможно образование хромопластов и хлоропластов.

4. Эндоплазматическая сеть представляет собой разветвленную систему трубочек, каналов и полостей. Различаютнегранулярную (гладкую) и гранулярную (шероховатую) ЭПС.

На негранулярной ЭПС находятся ферменты жирового и углеводного обмена (происходит синтез жиров и углеводов). Награнулярной ЭПС располагаются рибосомы, осуществляющие биосинтез белка.

Функции ЭПС: механическая и формообразующая функции; транспортная; концентрация и выделение.

5. Аппарат Гольджи состоит из плоских мембранных мешочков и пузырьков. В животных клетках аппарат Гольджи выполняет секреторную функцию. В растительных он является центром синтеза полисахаридов.

6. Вакуоли заполнены клеточным соком растений. Функции вакуолей: запасание питательных веществ и воды, поддержаниетургорного давления в клетке.

7. Лизосомы – мелкие органоиды сферической формы, образованы мембраной, внутри которой содержатся ферменты, гидролизующие белки, нуклеиновые кислоты, углеводы, жиры.

8. Клеточный центр. Функцией клеточного центра является управление процессом деления клеток.

9. Микротрубочки и микрофиламенты в совокупности формируют клеточный скелет животных клеток.

10. Рибосомы эукариот более крупные (80S).

11. Включения – запасные вещества, ивыделения – только в растительных клетках.

Ядро – важнейшая часть эукариотической клетки. Оно состоит из ядерной оболочки, кариоплазмы, ядрышек, хроматина.

1. Ядерная оболочка по строению аналогична клеточной мембране, содержит поры. Ядерная оболочка защищает генетический аппарат от воздействия веществ цитоплазмы. Осуществляет контроль за транспортом веществ.

2. Кариоплазма представляет собой коллоидный раствор, содержащий белки, углеводы, соли, другие органические и неорганические вещества. В кариоплазме содержатся все нуклеиновые кислоты: практически весь запас ДНК, информационные, транспортные и рибосомальные РНК.

3. Ядрышко – сферическое образование, содержит различные белки, нуклеопротеиды, липопротеиды, фосфопротеиды. Функция ядрышек – синтез зародышей рибосом.

4. Хроматин (хромосомы). В стационарном состоянии (время между делениями) ДНК равномерно распределены в кариоплазме в виде хроматина. При делении хроматин преобразуется в хромосомы.

Функции ядра: в ядре сосредоточена информация о наследственных признаках организма (информативная функция); хромосомы передают признаки организма от родителей к потомкам (функция наследования); ядро согласует и регулирует процессы в клетке (функция регуляции).

Источник: studfile.net

Источник: https://naturalpeople.ru/funkcii-kletochnogo-vkljuchenija-v-kletke/

Как они построены?

Большинство из них обладает каплеобразной формой, однако некоторые могут быть и другими, например, похожими на кляксу. Что касается размеров, то он может варьироваться. Клеточные включения могут быть как меньше органоидов, так и такими же по размеру или даже больше.

Состоят они в основном из одного конкретного вещества, в большинстве случаев органического. Это может быть как жир, так и углевод или белок.

Классификация

В зависимости от того, откуда берется вещество, из которого они состоят, существуют следующие типы клеточных включений:

  • экзогенные;
  • эндогенные;
  • вирусные.

Экзогенные клеточные включения построены из химических соединений, которые поступили в клетку извне. Те же, которые сформированы из веществ, вырабатываемых самой клеткой, называются эндогенными. Вирусные включения хоть и синтезируются самой клеткой, однако это происходит в результате попадания в нее ДНК вируса. Клетка просто принимает ее за свою ДНК и синтезирует из нее белок вируса.

В зависимости от функций, которые выполняют клеточные включения, они делятся на пигментные, секреторные и трофические.

Далее включения делятся на виды в зависимости от конкретных химических соединений, из которых они состоят.

Клеточные включения: функции

Они могут обладать тремя функциями. Рассмотрим их в таблице

Клеточные включенияФункции
ТрофическиеРезервная. В виде таких включений организм запасает питательные вещества. Их клетка может использовать в экстренных случаях. Содержатся во многих клетках организма.
ПигметныеСформированы из пигментов — веществ яркого цвета. Они обеспечивают клетке определенную окраску. Содержатся только в некоторых клетках организма.
СекреторныеОни построены из ферментов. Присутствуют они только в специализированных клетках. Например, в клетках поджелудочной железы.

Это все функции непостоянных образований в клетке.

Включения животных клеток

В цитоплазме животного содержатся как трофические, так и пигметные включения. В некоторых клетках присутствуют и секреторные.

Трофическими в клетках животных являются включения гликогена. Они обладают формой гранулы размером около 70 нм.

Гликоген является основным резервным веществом животного. В виде данного вещества организм запасает глюкозу. Существует два гормона, которые регулируют обмен глюкозы и глюкогена: инсулин и глюкагон. Они оба вырабатываются поджелудочной железой. Инсулин отвечает за формирование гликогена из глюкозы, а глюкагон, наоборот, участвует в синтезе глюкозы.

Больше всего включений гликогена находится в клетках печени. Также они в большом количестве присутствуют в составе мышц, в том числе и сердечной. Гликогеновые включения клеток печени имеют форму гранул размером около 70 нм. Они собираются в небольшие гроздья. Гликогеновые включения миоцитов (мышечных клеток) обладают округлой формой. Они одиночные, размером чуть больше рибосом.

Также для животных клеток характерны липидные включения. Это тоже трофические включения, благодаря которым организм может получить энергию в экстренном случае. Они состоят из жиров и имеют каплевидную форму.

В основном такие включения содержатся в клетках жировой соединительной ткани — липоцитах. Существует два вида жировой ткани: белая и бурая.

Липоциты белой содержат одну большую каплю жира, клетки бурой — многочисленные мелкие.

Что касается пигментных включений, то для животных клеток характерны те, которые состоят из меланина. Благодаря этому веществу радужка глаза, кожа и другие части организма имеют определенную окраску. Чем больше в клетках меланиновых включений, тем темнее то, что из этих клеток состоит.

Еще один пигмент, который может содержаться в клетках животных, — липофусцин. Это вещество желто-коричневого цвета. Оно накапливается в сердечной мышце и печени по мере старения органов.

Включения растительных клеток

Клеточные включения, строение и функции которых мы рассматриваем, содержатся и в клетках растений.

Главными трофическими включениями в этих организмах являются зерна крахмала. В их виде растения запасают глюкозу. Обычно включения крахмала обладают линзовидной, сферической или яйцевидной формой. Их размер может колебаться в зависимости от вида растения и от органа, в клетках которого они содержатся. Он может составлять от 2 до 100 мкм.

Липидные включения также характерны для растительных клеток. Они являются вторыми по распространенности трофическими включениями. Они обладают сферической формой и тонкой мембраной. Их иногда называют сферосомами.

[attention type=green][attention type=red]

Белковые включения присутствуют только в растительных клетках, для животных они не характерны. Они состоят из простых белков — протеинов. Белковые включения бывают двух видов: алейроновые зерна и белковые тельца.

[/attention][/attention]

Алейроновые зерна могут содержать либо кристаллы, либо просто аморфный белок. Так, первые называют сложными, а вторые — простыми. Простые алейроновые зерна, которые состоят из аморфного белка, встречаются реже.

Что касается пигметных включений, то для растений характерны пластоглобулы. В них накапливаются каротиноиды. Такие включения характерны для пластид.

Клеточные включения, строение и функции которых мы рассматриваем, в большинстве своем состоят из органических химических соединений, однако в растительных клетках есть и такие, которые сформированы из неорганических веществ. Это кристаллы оксалата кальция.

Они присутствуют только в вакуолях клетки. Эти кристаллы могут быть самой разнообразной формы, и зачастую она индивидуальна для определенных видов растений.

Источник: .ru

Источник: https://monateka.com/article/184351/

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: