Функции липидного слоя мембраны

Содержание
  1. Функции липидов и их характеристика
  2. Какие функции выполняют липиды
  3. Энергетический запас организма
  4. Структурные блоки
  5. Автономная система отопления
  6. «Золотой» запас индивидуума
  7. Такси заказывали?
  8. Второстепенные факторы
  9. Сигнальная функция
  10. Ферментативная функция
  11. Регуляторная функция
  12. Функции липидного слоя мембраны
  13. Физическое строение биомембран
  14. Методы анализа структуры биомембран
  15. Клеточная мембрана строение и функции
  16. Предназначение диффузионных мембран
  17. Свойства биологических мембран
  18. Что такое супердиффузионные мембраны
  19. Строение клеточной мембраны
  20. Преимущества использования супердиффузионных мембран
  21. Основные свойства плазматической мембраны
  22. Основные функции и особенности строения клеточной мембраны
  23. Основные функции клеточной мембраны
  24. Функции клеточной мембраны (кратко)
  25. Клеточная мембрана: ее строение и функции
  26. Что такое клеточная мембрана
  27. История исследования клеточной мембраны
  28. Свойства и функции клеточной мембраны
  29. Клеточная мембрана, видео

Функции липидов и их характеристика

Функции липидного слоя мембраны

Липиды выступают важнейшим источником энергетического запаса организма. Факт очевиден даже на номенклатурном уровне: греческое «липос» переводится как жир. Соответственно, категория липидов объединяет жироподобные вещества биологического происхождения. Функционал соединений достаточно разнообразен, что обусловлено неоднородностью состава данной категории био-объектов.

Какие функции выполняют липиды

Перечислите основные функции липидов в организме, которые являются основными. На ознакомительном этапе целесообразно выделить ключевые роли жироподобных веществ в клетках организма человека. Базовый перечень – это пять функций липидов:

  1. резервно-энергетическая;
  2. структурообразующая;
  3. транспортная;
  4. изолирующая;
  5. сигнальная.

К второстепенным задачам, которые липиды выполняют в сочетании с другими соединениями можно отнести регуляторную и ферментативную роль.

Энергетический запас организма

Это не только одна из важных, но приоритетная роль жироподобных соединений. По сути, часть липидов является.источником энергии всей клеточной массы. Действительно, жир для клеток – аналог топлива в баке автомобиля.

Реализуется энергетическая функция липидами следующим образом. Жиры и подобные им вещества окисляются в митохондриях, расщепляясь до уровня воды и двуокиси углерода. Процесс сопровождается выделением значительного количества АТФ – высокоэнергетических метаболитов.

Их запас позволяет клетке участвовать в энергозависимых реакциях.

Структурные блоки

Одновременно, липиды осуществляют строительную функцию: с их помощью формируется мембрана клетки. В процессе участвуют следующие группы жироподобных веществ:

  1. холестерин – липофильный спирт;
  2. гликолипиды – соединения липидов с углеводами;
  3. фосфолипиды – эфиры сложных спиртов и высших карбоновых кислот.

Следует отметить, что в сформировавшейся мембране, непосредственно жиры не содержатся. Образовавшаяся стенка между клеткой и внешней средой оказывается двухслойной. Это достигается вследствие бифильности.

Подобная характеристика липидов указывает, что одна часть молекулы – гидрофобна, то есть нерастворима в воде, вторая, напротив – гидрофильна. Как результат, бислой клеточной стенки формируется вследствие упорядоченного расположения простых липидов.

[attention type=yellow]

Молекулы разворачиваются гидрофобными участками друг к другу, тогда как гидрофильные хвосты направлены внутрь и вне клетки.

[/attention]

Это определяет защитные функции мембранных липидов. Во-первых, мембрана придает клетке форму и даже сохраняет ее. Во-вторых, двойная стенка – своеобразный пункт паспортного контроля, не пропускающий через себя нежелательных визитеров.

Автономная система отопления

Конечно, это наименование достаточно условно, но вполне применимо, если рассматривать какие функции выполняют липиды. Соединения не столько отапливают организм сколько удерживают тепло внутри.

Подобная роль отведена жировым отложениям, формирующимся вокруг различных органов и в подкожной ткани.

Этот класс липидов характеризуется высокими теплоизолирующими свойствами, что предохраняет жизненно-важные органы от переохлаждения.

Читайте так же:  Что такое липиды?

«Золотой» запас индивидуума

Дополнительно, жировые отложения выполняют резервную функцию. Это фактически кладезь энергии, используемый организмом при необходимости, Как пример, голодание или интенсивные физические нагрузки. Весь механизм осуществляется при содействии адипоциты. Это специальные клетки, строение и функции которых тесно связаны с триглицеридами. Жир занимает подавляющий объем адипоцитов.

Такси заказывали?

Транспортную роль липидов относят к второстепенной функции. Действительно, перенос веществ (преимущественно триглицеридов и холестерина) осуществляется отдельными структурами. Это связанные комплексы липидов и белков, именуемые липопротеины.

Как известно, жироподобные вещества нерастворимы в воде, соответственно плазме крови. Напротив, функции белков включают гидрофильность. Как результат, ядро липопротеида – скопление триглицеридов и эфиров холестерина, тогда как оболочка – смесь молекул протеина и свободного холестерола.

В таком виде, липиды доставляются к тканям или обратно в печень для вывода из организма.

Второстепенные факторы

Список уже перечисленных 5 функций липидов, дополняет ряд не менее важных ролей:

  • ферментативная;
  • сигнальная;
  • регуляторная

Сигнальная функция

Некоторые сложные липиды, в частности их строение, позволяют передавать нервные импульсы между клетками. Посредником в подобном процесс выступают гликолипиды. Не менее важным оказывается способность распознавать внутриклеточные импульсы, также реализуемая жироподобными структурами. Это позволяет отбирать из крови необходимые клетке вещества.

Ферментативная функция

Липиды, независимо от расположения в мембране или вне ее – не входят в состав ферментов. Однако, их биоснтез происходит с присутствием жироподобных соединений. Дополнительно, липиды участвуют в выполнении защиты стенок кишечника от ферментов поджелудочной железы. Избыток последних нейтрализуется желчью, где в значительных количествах включены холестерин и фосфолипиды.

Регуляторная функция

Еще одна роль, которую для называют второстепенной. Не участвуя непосредственно в регулирующих процессах, липиды входят в состав соединений, осуществляющих подобные функции. В частности, это мембрана клетки, выполняющая пропускной режим. Другим примером выступают стероидные гормоны, регулирующие обмен веществ, репродуктивную способность, и иммунную защиту организма.

Читайте так же:  Липопротеиды понижены

Перечень функций липидов не ограничивается рассмотренными случаями, но позволяет понять уровень важности веществ для человека.

Источник: https://SosudPortal.ru/li/funkcii-lipidov.html

Функции липидного слоя мембраны

Функции липидного слоя мембраны

Биомембраны. Структура и функциональная роль.

  1. Функции и задачи биомембран.

  2. Размеры, химический состав и строение биомембран.

  3. Асимметрия биомембран.

  4. Силы, стабилизирующие мембранные структуры.

  5. Физическое строение биомембран.

  6. Методы анализа структуры биомембран.

Функции и задачи биомембран.

Биомембраны выполняют двойную функцию:

  1. Поддерживают целостность клетки, обособленность от окружающей среды, автономность внутреннего устройства.

  2. Осуществляют постоянный обмен с окружающей средой (энергией, веществом, информацией).

Изучение биомембран важно для понимания жизнедеятельности организма в норме, для выяснения механизма патологии и для верного подхода к созданию комплекса врачебных мероприятий.

Задачи биомембран:

  1. Транспорт веществ.

  2. Обеспечение основных биоэнергетических процессов (синтез АТФ при окислении фосфолипидов, генерация биопотенциалов, распад АТФ при нервно-мышечной деятельности).

  3. Участие во всех видах рецепции.

Различают клеточную (плазматическую) и внутриклеточные биомембраны.

Размеры, химический состав и строение биомембран.

Биомембраны – надмолекулярные структуры. Их толщина очень мала (10 нм). Они представляют собой двумерные структуры.

Химический состав: липиды (40%) и белки (60%) – количественное соотношение варьирует. Биомембраны, в большинстве своём, гетерогенны. Но есть и относительно простые биомембраны. Например, белковая часть внутриклеточных мембран палочек сетчатки содержит всего один белок – родопсин.

Структурной основой биомембран являются липиды, большую часть которых составляют фосфолипиды. Общая структура фосфолипида:

  1. Остаток спирта (Х).

  2. Углеводные цепочки, остатки высших жирных кислот (R1 и R2).

  3. Спирт глицерин.

  4. Остаток фосфорной кислоты.

О

||

ОН ­ Р ­ О ­ Х

|

О

| Гидрофильная

СН2 ­ СН ­ СН2 часть

| |

О О

| |

С = О С = О

| |

R1 R2 Гидрофобная часть

Все фосфолипиды содержат полярную гидрофильную головку и два неполярных гидрофобных хвоста, следовательно, проявляют амфофильные свойства.

В 1972 году Зингер и Николсон предложили Мозаичную модель биомембран, популярную и по настоящее время. Согласно этой теории, структурной основой биомембран является двойной липидный слой, в котором гидрофобные хвосты обращены внутрь биомембран и образуют единую углеводородную фазу, а полярные головки находятся снаружи, по обе поверхности билипидного слоя. Схематически:

Этот билипидный слой инкрустирован молекулами белка, которые делят на периферические и интегральные.

Периферические белки – белки, которые целиком расположены на гидрофильной части слоя, т.е. только на поверхности мембран.

Интегральные белки – белки, имеющие участки гидрофобной поверхности, они погружены на различную глубину в билипидный слой. Некоторые белки пронизывают мембрану насквозь и называются прошивающими.

С учётом белкового компонента, схема примет вид:

— периферический белок

— интегральный белок

— прошивающий белок

Асимметрия биомембран.

Как белковый, так и липидный состав биомембран неодинаков. Фосфолипидные слои отличаются относительным содержанием компонентов, а расположение белков в зависимости от слоя имеет принципиальные, качественные отличия.

Например, в плазматических мембранах к внутренней стороне примыкает больше белков-ферментов, а к наружной – больше белков узнавания и оборонительных белков.

Сравним Мозаичную модель Зингера-Николсона с «Бутербродной» модельюДаниэли и Дайсона: принцип расположения липидов одинаковый. Однако в «Бутербродной» модели все белки – гидрофилы, а, следовательно, расположены только на поверхности мембраны, по обе стороны от билипидного слоя, т.е. возникает двусторонняя симметрия. Схема «Бутербродной» модели:

Различают следующие силы взаимодействия:

  1. Сильные (ковалентные).

  2. Слабые.

Отдельная сильная связь прочнее слабой; чтобы её разрушить, необходимо приложить больше энергии. Однако кооперативный вклад слабых взаимодействий зачастую равен вкладу сильных.

Целостность биомембран поддерживается слабыми связями, а определяющую роль играют гидрофобные взаимодействия между неполярными группировками в результате отталкивания молекул воды. В биомембране они возникают между хвостами липидов, а также между хвостами липидов и интегральными белками.

Полярные головки липидов связываются с периферическими белками электростатическими силами.

Физическое строение биомембран

Физическое строение биомембран определяется свойствами билипидного слоя. А они – жидкостные. Доказательства:

1. Мембранные липиды не закреплены жёстко и постоянно меняются местами. Различают 2 вида перемещений:

  1. латеральная диффузия – перемещение липидных молекул в пределах своего монослоя (в плоскости мембраны);

  2. флип-флоп – перемещение из одного монослоя в другой.

Для молекул липидного слоя характерен коэффициент диффузии см2/с.

Латеральную диффузию могут совершать мембранные белки. В данном случае коэффициент будет зависеть от глубины погружения белка и вязкости среды. Для периферических белков см2/с, что соответствует вязкости оливкового масла.

2. Большинство мембранных липидов содержит двойные связи, т.е. являются ненасыщенными, с низкой температурой физиологического плавления.

3. Метод калориметрии. Микрокалориметрическими измерениями установлено, что при определённых условиях мембранно-фазовый переход соответствует плавлению липидов, т.е. температура плавления очень низка (нередко — отрицательна).

Однако мембраны не растекаются, а поддерживают объём клетки. Это становится возможным благодаря сложной пространственной структуре, напоминающей кристаллическую, характерную для твёрдых тел.

[attention type=red]

В биомембранах сочетается упорядоченность и подвижность, т.е. биомембраны находятся в жидко-кристаллическом состоянии, «белковые айсберги плавают в липидном море».

[/attention]

Часть белковых молекул закреплено на цитоплазматических структурах клетки микротрубочками и микрофиламентами, являющимися стабилизаторами клеточной поверхности.

Методы анализа структуры биомембран

  1. Электронная микроскопия.

  2. Рентгенография.

  3. Спектроскопия, магнитный резонанс:

  • Флуоресцирующая спектроскопия.

  • БЛМ – искусственные мембраны.

    В организме практически нет парамагнетиков и сильно флуоресцирующих веществ, следовательно, 3-ий и 4-ый методы используются в определённой модификации: в организм вводят парамагнитные или флуоресцирующие метки и зонды.

    Метка – молекула, встраивающаяся в мембрану и удерживающаяся в ней ковалентными связями.

    Зонд — молекула, встраивающаяся в мембрану и удерживающаяся в ней слабыми взаимодействиями.

    С помощью меток удаётся установить структуру молекул и взаимную ориентацию их частей. А с помощью зондов можно также установить вязкость – физическое состояние окружения молекул.

    Недостаток данных методов – они влияют на свойства объекта.

    ЯМР позволяет установить структуру молекул, подвижность отдельных группировок в них. Применяется в клинической диагностике болезней, связанных с изменением структурного состояния органов и тканей (в т.ч. онкологических). Производится сканирование (послойный просмотр участка) – ЯМР-интраскопия.

    Преимущества: не оказывает вредного воздействия на организм.

    Искусственные липидные мембраны (БЛМ) – получают при контакте смеси липидов, растворённых в органике с водой. Различают плоские и сферические (везикулярные) искусственные мембраны. Они также имеют 2-х-слойное строение.

    Физические свойства БЛМ близки к свойствам биомембран (толщина, электроёмкость). Но БЛМ не обладают метаболической активностью, так как не имеют в своём составе белков. Применяются для изучения проницаемости и транспорта веществ.

    Многослойные везикулярные мембраны (липосомы) – замкнутые частицы, образованные рядами концентрических билипидных слоёв, раздёлённых водным пространством. Толщина каждого билипидного слоя в 3-4 раза больше, чем у водной прослойки.

    Диаметр липосомы 5-50 мкм. Используются в терапии как капсулы для доставки лекарственных препаратов в органы и ткани (липосома + антитело – транспорт к ткани-антигену).

    Преимущества: нетоксичны, полностью усваиваемы, способны преодолевать ряд барьеров. Схема:

    Биомембраны. Мембранный транспорт.

    1. Проницаемость биомембран. Виды трансмембранного переноса веществ.

    2. Пассивный мембранный транспорт: способы и математическое описание.

    3. Молекулярные механизмы пассивного мембранного транспорта.

    4. Активный мембранный транспорт. Характеристика бионасосов.

    5. Молекулярная организация и этапы работы K-Na насоса.

    6. Сопряжённый активный транспорт.

    Проницаемость биомембран. Виды трансмембранного переноса веществ.

    Проницаемость – свойство мембран пропускать различные вещества.

    Селективность (избирательность) – различная проницаемость для разных соединений. У биомембран селективность высокая.

    Существует два принципиально различных типа переноса вещества через мембрану:

    1. Пассивный транспорт.

    2. Активный транспорт.

    Градиент – характеризует быстроту изменения параметра в пространстве (вдоль выбранного направления). Градиент – векторная характеристика. В биофизике принято градиент направлять от большего значения к меньшему. Пример: ГС – градиент концентраций, Г — градиент потенциала.

    Свободная энергия F – характеризует способность системы совершать работу.

    Виды химических реакций:

    1. Эндергонические (энтропия понижается, энергия растёт) – образование пептидной связи при биосинтезе белка.

    2. Экзергонические (энтропия увеличивается, энергия уменьшается) – гидролиз АТФ.

    Пассивный транспорт – перемещение вещества по концентрационному и электрическому градиентам.

    Характерные черты (критерии):

    1. Работы против внешних сил не совершается, следовательно, энергия метаболических процессов не расходуется.

    2. Градиенты уменьшаются, свободная энергия системы падает.

    3. Возможен перенос вещества в обоих направлениях: как в клетку, так и из клетки.

    4. Свойственен любым мембранам (как биологическим, так и искусственным, но селективность у биологических выше).

    Активный транспорт – перенос против градиента, концентрационного или электрического.

    Характерные черты (критерии):

    1. Требует дополнительной затраты энергии (её поставляют экзергонические реакции).

    2. Градиенты увеличиваются, свободная энергия возрастает.

    3. Молекулярные системы характеризуются векторностью (строгой направленностью).

    4. Свойственен лишь биомембранам.

  • Источник: studfile.net

    Источник: https://naturalpeople.ru/funkcii-lipidnogo-sloja-membrany/

    Клеточная мембрана строение и функции

    Функции липидного слоя мембраны

    Характеристики функций кратко перечислены в таблице:

    Функция мембраныОписание
    Барьерная рольПлазмолемма выполняет защитную функцию, предохраняя содержимое клетки от воздействия чужеродных агентов. Благодаря особой организации белков, липидов, углеводов, обеспечивается полупроницаемость плазмолеммы.
    Рецепторная функцияЧерез клеточную мембрану происходит активация биологически активных веществ в процессе связывания с рецепторами. Так, иммунные реакции опосредуются через распознавание чужеродных агентов рецепторным аппаратом клеток, локализованным на клеточной мембране.
    Транспортная функцияНаличие пор в плазмолемме позволяет регулировать поступление веществ внутрь клетки. Процесс переноса протекает пассивно (без затрат энергии) для соединений с низкой молекулярной массой. Активный перенос связан с затратами энергии, высвобождающейся при расщеплении аденозинтрифосфота (АТФ). Данный способ имеет место для переноса органических соединений.
    Участие в процессах пищеваренияНа клеточной мембране происходит осаждение веществ (сорбция). Рецепторы связываются субстратом, перемещая его внутрь клетки. Образуется пузырек, свободно лежащий внутри клетки. Сливаясь, такие пузырьки формируют лизосомы с гидролитическими ферментами.
    Ферментативная функцияЭнзимы, необходимые составляющие внутриклеточного пищеварения. Реакции, требующие участия катализаторов, протекают с участием ферментов.

    Предназначение диффузионных мембран

    Основное предназначение супердиффузионных мембран для кровли является обеспечение защиты от проникновения внутренней и наружной влаги внутрь теплоизоляционного слоя. Источниками этой влаги могут быть внутренние испарения и атмосферные осадки.

    Кроме этого, расположенная в кровельном покрытии диффузионная мембрана обеспечивает эффективные условия отвода уже накопившейся в силу тех или иных причин влаги.

     Супердиффузионную мембрану можно с полной уверенностью назвать одной из важнейших составляющих теплоизоляционного контура, так как она косвенным образом способствует снижению потерь тепловой энергии.

    Бережливый хозяин собственного дома, знающий толк в экономии, никогда не будет раздумывать о необходимости или отсутствии таковой при принятии решения о покупке и последующей установке диффузионной мембраны. Тем более, что стоимость этого материала на современном рынке строительных материалом можно с уверенностью назвать чисто символической. 

    Свойства биологических мембран

    1. Способность к самосборке после разрушающих воздействий. Это свойство определяется физико-химическими особенностями фосфолипидных молекул, которые в водном растворе собираются вместе так, что гидрофильные концы молекул разворачиваются наружу, а гидрофобные — внутрь. В уже готовые фосфолипидные слои могут встраиваться

    белки

    Способность к самосборке имеет
    важное значение на клеточном уровне

    2. Полупроницаемость (избирательность в пропускании ионов и молекул). Обеспечивает поддержание постоянства ионного и молекулярного

    состава в клетке.

    3. Текучесть
    мембран
    . Мембраны не являются жесткими структурами, они постоянно флюктуируют за счет вращательных и колебательных движений молекул липидов и белков. Это обеспечивает большую скорость протекания ферментативных

    и других химических процессов в мембранах.

    4. Фрагменты
    мембран не имеют свободных концов
    ,
    так как замыкаются в пузырьки.

    Что такое супердиффузионные мембраны

    Диффузионная мембрана – это специальный материал, имеющий двух-, трех- или даже четырехслойную структуру, основу которого составляет нетканый холст. Диффузионные мембраны применяют для защиты утепляющего слоя от проникновения в его толщу испарений. Также, диффузионные мембраны являются превосходной защитой от воды и ветра.

     При создании крыши, в полном объеме соответствующей всем современным требованиям, каждый застройщик обязательно столкнется с таким понятием, как «кровельный пирог».

    [attention type=green]

    Для того чтобы крыша выполняла все возложенные на нее функции в течение всего срока эксплуатации, кроме основного кровельного покрытия, необходимо использовать некоторые дополнительные материалы, к числу которых относятся супердиффузионные мембраны. Супердиффузионные мембраны можно использовать при создании кровельного пирога в любой климатической зоне нашей страны.

    [/attention]

    Роль этого дополнительного слоя чрезвычайно важна, так именно его присутствие позволяет снизить силу неблагоприятных воздействий, вызванных экстремальными погодными условиями, а также нивелировать недочеты и ошибки, возникшие в ходе неправильного монтажа кровли. 

    Строение клеточной мембраны

    Клеточная мембрана содержит углеводы, которые покрывают ее, в виде гликокаликса. Это надмембранная структура, которая выполняет барьерную функцию. Белки, расположенные здесь, находятся в свободном состоянии. Несвязанные протеины участвуют в ферментативных реакциях, обеспечивая внеклеточное расщепление веществ.

    Белки цитоплазматической мембраны представлены гликопротеинами. По химическому составу выделяют протеины, включенные в липидный слой полностью (на всем протяжении), – интегральные белки. Также периферические, не достигающие одной из поверхностей плазмолеммы.

    Первые функционируют как рецепторы, связываясь с нейромедиаторами, гормонами и другими веществами. Вставочные белки необходимы для построения ионных каналов, через которые осуществляется транспорт ионов, гидрофильных субстратов. Вторые являются ферментами, катализирующими внутриклеточные реакции.

    Преимущества использования супердиффузионных мембран

    Хозяин частного дома, решивший использовать в конструкции кровельного пирога супердиффузионные мембраны, в сравнении с домовладельцами, использующими традиционные технологии, получит ряд неоспоримых преимуществ, среди которых основными можно назвать следующие:

    • Использование супердиффузионных мембран позволяет одной пленке заменить две, такие как гидро- и ветрозащита. Наличие мембраны допускает возведение конструкции без наличия вентиляционного зазора.
    • Укладка супердиффузионных мембран разрешается непосредственно на поверхность любого покрытия, что позволяет укладывать теплоизоляцию более толстым слоем, в сравнении с традиционными технологиями. Как результат, владелец дома получает усиленную теплоизоляцию. 
    • Использование супердиффузионных мембран позволяет продлить срок эксплуатации утепляющего материала и деревянных конструкций кровли. При этом, деревянные элементы крыши могут быть установлены без предварительной обработки специальными химическими составами. 
    • Применение супердиффузионных мембран в ходе создания кровельного пирога значительно сокращает время проведения монтажных работ и связанных с ними затрат. 

    Основные свойства плазматической мембраны

    Липидный бислой препятствует проникновению воды. Липиды – гидрофобные соединения, представленные в клетке фосфолипидами. Фосфатная группа обращена наружу и состоит из двух слоев: наружного, направленного во внеклеточную среду, и внутреннего, отграничивающего внутриклеточное содержимое.

    Водорастворимые участки носят название гидрофильных головок. Участки с жирной кислотой направлены внутрь клетки, в виде гидрофобных хвостов. Гидрофобная часть взаимодействует с соседними липидами, что обеспечивает прикрепление их друг к другу. Двойной слой обладает избирательной проницаемостью на разных участках.

    Так, в середине мембрана непроницаема для глюкозы и мочевины, здесь свободно проходят гидрофобные вещества: диоксид углерода, кислород, алкоголь

    Важное значение имеет холестерол, содержание последнего определяет вязкость плазмолеммы

    Adblock
    detector

    Источник: https://mr-build.ru/newteplo/naruznaa-membrana.html

    Основные функции и особенности строения клеточной мембраны

    Функции липидного слоя мембраны

    Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

    Основные функции клеточной мембраны

    Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) — одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде.

    Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K — выйти наружу.

    Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

    Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.

    Транспорт через клеточную мембрану

    У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица.

    Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам).

    Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом.

    Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

    С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками.

    [attention type=yellow]

    Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

    [/attention]

    У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

    Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

    Функции клеточной мембраны (кратко)

    ФункцияОписание
    Защитный барьерОтделяет внутренние органеллы клетки от внешней среды
    РегулирующаяПроизводит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
    Разграничивающая (компартментализация)Разделение внутреннего пространства клетки на независимые блоки (компартменты)
    Энергетическая– Накопление и трансформация энергии;- световые реакции фотосинтеза в хлоропластах;- Всасывание и секреция.
    Рецепторная (информационная)Участвует в формировании возбуждения и его проведения.
    ДвигательнаяОсуществляет движение клетки или отдельных ее частей.

    Оцените, пожалуйста, статью. Мы старались:) (16 4,31 из 5)
    Загрузка…

    Источник: https://animals-world.ru/naruzhnaya-kletochnaya-membrana/

    Клеточная мембрана: ее строение и функции

    Функции липидного слоя мембраны

  • Что такое клеточная мембрана
  • История исследования клеточной мембраны
  • Свойства и функции клеточной мембраны
  • Строение клеточной мембраны
  • Клеточная мембрана, видео
  • Ни для кого не секрет, что все живые существа на нашей планете состоят их клеток, этих бесчисленных «атомов» органической материи. Клетки же в свою очередь окружены специальной защитной оболочкой – мембраной, играющей очень важную роль в жизнедеятельности клетки, причем функции клеточной мембраны не ограничиваются только лишь защитой клетки, а представляют собой сложнейший механизм, участвующий в размножении, питании, регенерации клетки.

    Что такое клеточная мембрана

    Само слово «мембрана» с латыни переводится как «пленка», хотя мембрана представляет собой не просто своего роду пленку, в которую обернута клетка, а совокупность двух пленок, соединенных между собой и обладающих различными свойствами.

    На самом деле клеточная мембрана это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой, так звучит академическое определение того что, представляет собой клеточная мембрана.

    Значение мембраны просто огромно, ведь она не просто отделяет одну клетку от другой, но и обеспечивает взаимодействие клетки, как с другими клетками, так и окружающей средой.

    История исследования клеточной мембраны

    Важный вклад в исследование клеточной мембраны был сделан двумя немецкими учеными Гортером и Гренделем в далеком 1925 году.

    Именно тогда им удалось провести сложный биологический эксперимент над красными кровяными тельцами – эритроцитами, в ходе которых ученые получили так званые «тени», пустые оболочки эритроцитов, которые сложили в одну стопку и измерили площадь поверхности, а также вычислили количество липидов в них. На основании полученного количества липидов ученые пришли к выводу, что их как раз хватаем на двойной слой клеточной мембраны.

    В 1935 году еще одна пара исследователей клеточной мембраны, на этот раз американцы Даниэль и Доусон после целой серии долгих экспериментов установили содержание белка в клеточной мембране.

    Иначе никак нельзя было объяснить, почему мембрана обладает таким высоким показателем поверхностного натяжения.

    Ученые остроумно представили модель клеточной мембраны в виде сэндвича, в котором роль хлеба играют однородные липидо-белковые слои, а между ними вместо масла – пустота.

    В 1950 году с появлением электронного микроскопа теорию Даниэля и Доусона удалось подтвердить уже практическими наблюдениями – на микрофотографиях клеточной мембраны были отчетливо видны слои из липидных и белковых головок и также пустое пространство между ними.

    В 1960 году американский биолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственной верной, но с дальнейшим развитием науки, стали появляться сомнения в ее непогрешимости. Так, например, с точки зрения термодинамики клеткам было бы сложно и трудозатратно транспортировать необходимые полезные вещества через весь «сэндвич»

    И только в 1972 году американские биологи С. Сингер и Г. Николсон смогли объяснить нестыковки теории Робертсона с помощью новой жидкостно-мозаичной модели клеточной мембраны.

    [attention type=red]

    В частности они установили что клеточная мембрана не однородна по своему составу, более того – ассиметрична и наполнена жидкостью. К тому же клетки пребывают в постоянном движении.

    [/attention]

    А пресловутые белки, которые входят в состав клеточной мембраны имеют разные строения и функции.

    Рисунок клеточной мембраны.

    Свойства и функции клеточной мембраны

    Теперь давайте разберем, какие функции выполняет клеточная мембрана:

    Барьерная функция клеточной мембраны – мембрана как самый настоящий пограничник, стоит на страже границ клетки, задерживая, не пропуская вредные или попросту неподходящие молекулы

    Транспортная функция клеточной мембраны – мембрана является не только пограничником у ворот клетки, но и своеобразным таможенным пропускным пунктом, через нее постоянно проходит обмен полезными веществами с другими клетками и окружающей средой.

    Матричная функция – именно клеточная мембрана определяет расположение органоидов клетки относительно друг друга, регулирует взаимодействие между ними.

    Механическая функция – отвечает за ограничение одной клетки от другой и параллельно за правильно соединение клеток друг с другом, за формирование их в однородную ткань.

    Защитная функция клеточной мембраны является основой для построения защитного щита клетки. В природе примером этой функции может быть твердая древесина, плотная кожура, защитный панцирь у черепахи, все это благодаря защитной функции мембраны.

    Энергетическая функция – фотосинтез и клеточное дыхание были бы невозможны без участия белка, содержащегося в клеточной мембране. Именно через белковые каналы происходит важный клеточный энергообмен, в этом заключаются самые главные функции белка в клеточной мембране.

    Рецепторная функция – и опять возвращаемся к белкам мембраны, помимо собственно энергообмена они обладают еще одной очень важной функцией – они служат рецепторами клеточной мембраны, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. Все это необходимо для нормального течения гормональных процессов и проведения нервного импульса.

    [attention type=green]

    Ферментативная функция – еще одна важная функция, осуществляемая некоторыми белками клетки. Например, благодаря этой функции в эпителии кишечника происходит синтез пищеварительных ферментов.

    [/attention]

    Также помимо всего этого через клеточную мембрану осуществляется клеточный обмен, который может проходить тремя разными реакциями:

    • Фагоцитоз – это клеточный обмен, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают различные питательные вещества.
    • Пиноцитоз – представляет собой процесс захвата мембраной клетки, соприкасающиеся с ней молекулы жидкости. Для этого на поверхности мембраны образуются специальные усики, которые как будто окружают каплю жидкости, образуя пузырек, которые впоследствии «проглатывается» мембраной.
    • Экзоцитоз – представляет собой обратный процесс, когда клетка через мембрану выделяет секреторную функциональную жидкость на поверхность.

    Клеточная мембрана, видео

    И в завершение образовательное видео о клеточной мембране.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Эта статья доступна на английском языке – Cell Membrane.

    Источник: https://www.poznavayka.org/biologiya/kletochnaya-membrana-ee-stroenie-i-funktsii/

    Сам себе врач
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: