Функция жгутиков в клетке

Содержание
  1. Органоиды движения – строение, характеристики и функции
  2. Жгутики бактерий и архей
  3. Механизм работы ресничек
  4. Псевдоподии и миофибриллы
  5. Жгутики – это поверхностные локомоторные структуры. Строение жгутиков прокариот и эукариот
  6. Общая характеристика жгутиков
  7. Особенности жгутиков прокариот и эукариот
  8. Жгутики архей и бактерий
  9. Строение и функционирование бактериального жгутика
  10. Структура базального мотора
  11. Жгутик ядерной клетки
  12. Реснички и жгутики
  13. Особенности и функции
  14. Строение
  15. Где встречаются?
  16. 19. Жгутики. Расположение и функции
  17. 20. Строение жгутика у грамположительных и грамотрицательных бактерий. Синтез жгутика
  18. 21. Скольжение, как тип движения бактерий
  19. Функция жгутиков в клетке
  20. Жгутики бактерий
  21. Базальное мотор и механизм его работы
  22. Механизм движения клетки
  23. Регуляция движения
  24. Жгутики архей
  25. Жгутики эукариот
  26. Изображения по теме
  27. Бактерии со жгутиками: строение, функции, виды, расположение
  28. Для чего бактериям жгутики
  29. Из чего состоят жгутики
  30. Что такое ворсинки
  31. Какие различия имеют жгутиковые микроорганизмы
  32. Жгутики прокариот
  33. Как определить жгутики
  34. Органоиды движения: функции и строение, особенности движения простейших
  35. Строение и функции органоидов движения
  36. Особенности движения простейших
  37. Эвглена зелёная
  38. Инфузория туфелька
  39. Амеба обыкновенная

Органоиды движения – строение, характеристики и функции

Функция жгутиков в клетке

Органоиды движения содержатся в растительных и животных клетках, входящих в состав многоклеточных организмов. Структура этих органелл формируется из молекул белков и фосфолипидов. Их средний размер составляет 0,25—100 мкм. В таблице перечислены основные особенности органоидов движения.

Наименование органоида движения Строение Функции органоидов движения Название одноклеточного организма
Жгутики Цитоплазматические наросты, расположенные на поверхности мембраны Передвижение клеток Жгутиковые инфузории
Реснички Тонкие выросты на эластичной структуре клетки Очистка органов от пыли Ресничные инфузории
Псевдоподии (ложноножки) Выступы в цитоплазме клетки Питание и передвижение организма Саркодовые
Миофибриллы Нити малой толщины Сокращение мышц Корненожки

В человеческом организме присутствует большое количество ресничек и жгутиков. Они предназначены для очищения легких, защиты эпителия и стабильного функционирования репродуктивной системы. Принцип работы этих органоидов движения заключается в установлении прочных связей с клеточной мембраной.

Жгутики бактерий и архей

Жгутик — органоид движения эукариотов, обеспечивающий передвижение клеточных организмов в жидкой среде. Они содержатся в протистах, зооспорах и половых клетках. Эти органеллы представляют собой небольшие наросты, окруженные эластичной пленкой. Жгутики имеют цитоскелет, где осуществляется процесс гидролиза АТФ. Второстепенные функции жгутиков:

  • формирование биологических пленок;
  • обеспечение контакта клеточных организмов с субстратами;
  • облегчение проникания симбиотических бактерий в клетки;
  • включение защитных механизмов иммунной системы;
  • предотвращение заражения клетки инфекционными вирусами.

Жгутик эукариотических клеток представляет собой комплексный структурный элемент. Он включает в себя 9 пар микротрубочек, соединенных нексиновыми мостиками. Между ними присутствует переходная зона эксонемы. В центральной части жгутика располагается ось с центриолями. На следующем рисунке описано строение органоида в разрезе.

80% бактерий состоят из жгутиков. Они находятся на противоположных полюсах клеточного организма. Отличительной чертой жгутиков бактерий является их расположение в клетке. Они вмонтированы в оболочку клеточного организма.

Вращение жгутика осуществляется при помощи энергии, получаемой при гидролизе АТФ. Органоид перемещается по часовой стрелке. Частотный диапазон вращения органеллы составляет от 200 до 1850 Гц.

Бактериальный жгутик состоит из следующих компонентов:

  1. Филамент. Представляет собой нитевидную структуру. Длина этого компонента составляет не более 14 мкм. Нить располагается за пределами цитоплазмы.
  2. Базальное тело. Представлено в виде муреинового чехла, окруженного мембранной оболочкой. Оно состоит из системы секреции и мотора.
  3. Крюк. Гибкий элемент, соединенный с филаментом и базальным телом. Его длина составляет 55 нм.

Основным рабочим элементом жгутика бактерий является филамент. Этот компонент объединяет несколько тысяч субъединиц фосфолипидов и белка. При вращении органоида филамент приобретает форму спирали, закрученной в левую сторону.

Базальное тело бактериального жгутика состоит из следующих частей:

  • оси клеточного центра;
  • L-кольца;
  • P-кольца;
  • MS-кольца;
  • ротора;
  • C-кольца.

Для определения характера передвижения жгутика требуется знать количество ресурсов, поставляемых основными компонентами базального тела.

Жгутики архей состоят из археллума, включающего в себя 7—13 различных генов. Структура этого органоида формируется едиными оперонами. Функцией жгутиков архей является перемещение клеточных организмов во влажной среде, но они не принимают участия в формировании биологических пленок.

Механизм работы ресничек

Реснички представляют собой тонкие органеллы в форме волоса. Находясь в неподвижном состоянии, эти органоиды выполняют роль рецепторов. Поверхность ресничек покрыта плотной цитоплазматической мембраной. В состав органеллы входит большое количество микротрубочек. В центральной части ресничек расположено базальтовое тело с центриолями.

В микротрубочках присутствуют белковые структуры, обеспечивающие стабильное скольжение ресничек. Во время передвижения органоиды совершают удары. Они предназначены для деполяризации клеточной мембраны. Характер и направление ударов зависят от процентного содержания ионов кальция в структуре ресничек.

Псевдоподии и миофибриллы

Псевдоподии представляют собой цитоплазматические выросты без плотной клеточной оболочки. В школьных учебниках эти органеллы также могут называться ложноножками. Псевдоподии сдержат простейшие организмы:

  • амебы;
  • арцеллы;
  • фораминиферы.

Ложноножки предназначены для всасывания питательных веществ. Также к их функциям относится перемещение клеточных организмов. Скорость движения клеток составляет не более 0,2 мм/мин. Во время перемещения псевдоподии закрепляются в субстрате и захватывают частицы пищи. В результате этого процесса формируется пищеварительная вакуоль.

Миофибриллы представляют собой органоиды, состоящие из тонких белковых филаментов. Они располагаются в мышечном волокне и не имеют клеточной оболочки. Миофибриллы окружены саркоплазматическим ретикулумом, состоящим из саркомеров. Связь этих органелл с мышцами обеспечивается при помощи белковых нитей.

Миофибриллы обеспечивают стабильное сокращение мышечных волокон. При воздействии нервных импульсов эти органоиды начинают уменьшаться.

[attention type=yellow]

В результате сокращения числа органоидов образуется энергия, определяющая силу мышцы. Во время силовых тренировок количество миофибрилл увеличивается. Этот процесс называется гипертрофией.

[/attention]

Большие органоиды начинают делиться на несколько маленьких, иначе мышцы не смогут получать достаточное количество энергии.

После травмирования мышечных волокон число миофибрилл уменьшается. Этот процесс ускоряется при наличии гипса, фиксирующего мышцы в определенном положении. Это обусловлено разрушением саркомеров. В результате сокращения количества миофибрилл мышцы получают меньше энергии.

Источник: https://nauka.club/biologiya/organoidy-dvizheniya.html

Жгутики – это поверхностные локомоторные структуры. Строение жгутиков прокариот и эукариот

Функция жгутиков в клетке

Жгутики – это длинные нитевидные образования на поверхности клетки, обеспечивающие ее активное пространственное перемещение. Несмотря на многообразие организмов, эти структуры внутри каждого надцарства (прокариот либо эукариот) характеризуются общей схемой строения.

Общая характеристика жгутиков

У доядерных организмов (бактерий и архей) жгутики – это основной способ передвижения.

Среди эукариот эти локомоторные структуры в основном присутствуют у одноклеточных организмов, – простейших, но также характерны для гамет растений и животных.

У некоторых многоклеточных беспозвоночных, – например, губок, – жгутики выполняют функцию перемещения жидкого субстрата относительно неподвижного клеточного пласта.

Морфологически жгутик состоит из закрепленного в толще клетки основания и длинной наружной нити, совершающей вращательные движения по спиральной траектории. Строение и механизм работы этих частей у прокариот и эукариот сильно отличаются, в связи с чем выделяют два соответствующих класса жгутиков.

Особенности жгутиков прокариот и эукариот

Наружную нить жгутика называют филаментом. У прокариот она состоит из белка флагеллина и пассивно движется за счет вращения базального мотора. Филамент ядерных клеток устроен значительно сложнее и благодаря взаимодействию белков тубулина и динеина способен изгибаться самостоятельно.

Основные различия между классами жгутиков
у прокариоту эукариот
размеры органеллы (толщина, нм; длина, мкм)10-30 нм, 6–15 мкм200 нм, 100 мкм
белки жгутиковой нитифлагеллинтубулин и динеин
мембрана вокруг филаментаотсутствуетприсутствует
степень вращения360°180°
источник энергиитрансмембранный потенциал (у архей возможно АТФ)АТФ
движение нитипассивноеактивное
субструктурыфиламент, крюк, базальное тельцефиламент, базальное тело (кинетосома)
строение филаментасплошной (у архей) или полый белковый цилиндрдублеты микротрубочек
структура базальной частистержень, закрепленный в сложной системе колец или мембраноподобные органеллы (у архей)триплеты микротрубочек

Такое количество отличий свидетельствует об отсутствии гомологии между этими органоидами, то есть они не одинаковы по происхождению и строению, хоть и выполняют сходные функции.

Надцарство прокариот включает в себя царства архей и бактерий. Локомоторные структуры этих таксонов тоже не гомологичны друг другу, однако очень близки по строению. Жгутики архей изучены гораздо хуже.

Жгутики архей и бактерий

По способу перемещения подвижные бактерии подразделяются на плавающие и скользящие. Жгутики – это локомоторный орган плавающих микроорганизмов, позволяющий им развивать скорость от 20 до 200 мкм/сек.

Движение может быть спонтанным (если физико-химические характеристики среды одинаковы во всех направлениях) либо целенаправленным, когда бактерия стремится попасть в наиболее выгодные для нее условия. При адаптивном перемещении вращение базального мотора контролируется сенсорными системами.

По количеству и расположению жгутиков на клетке бактерии выделяют четыре морфологических типа микроорганизмов:

  • монотрихи – имеют единственный жгутик;
  • лофотрихи – характеризуются жгутиковым пучком на одном из клеточных полюсов;
  • амфитрихи – имеют один или несколько жгутиков на обоих концах клетки;
  • перитрихи – покрыты множеством жгутиков со всех сторон.

Тип жгутикования может быть как видовым признаком, так и результатом изменения условий культивирования или стадии жизненного цикла бактерии.

Жгутик архей во многом похож на бактериальный, однако имеет ряд отличий в ультраструктуре и механизме движения. Так, филамент у архей тоньше, построен из другого типа флагеллина, полый каналец в нити отсутствует. Длина крюка непостоянна, базальное тело имеет совсем другое строение и функционирует, скорее всего, на основе энергии АТФ. Археи движутся значительно медленнее бактерий.

Строение и функционирование бактериального жгутика

Жгутик бактерий образован тремя субструктурами: наружной нитью (филаментом), гибким сочленением (крюком) и базальным тельцем, заякоренным в клеточной оболочке. Синтез и сборку этих элементов кодируют около 50 fla-генов. За работу мотора отвечают mot-гены, а за адаптивные реакции – che-гены.

Филамент жгутика – это относительно жесткая белковая спираль, закрученная против часовой стрелки с образованием центрального полого канала диаметром до 3 нм. Такая конструкция способствует формированию спиральной траектории движения нити. По каналу филамента транспортируются молекулы флагеллина (FliC).

Крюк соединяет нить с базальным телом жгутика и состоит из двух типов белка: FlgE и FlgKl. Длина сочленения постоянна и составляет около 50 нм. Из-за изогнутой формы крюка при вращении мотора основание фибриллы описывает круг, благодаря чему возможно спиралевидное движение жгутика.

[attention type=red]

Базальное тельце закреплено в клеточной стенке и цитоплазматической мембране бактерий. Эта субструктура выполняет не только фиксирующую функцию, но и является мотором жгутика.

[/attention]

Строение и локализация базального тельца зависят от типа клеточной стенки микроорганизма. У грамотрицательных бактерий оно состоит из двух внутренних (M и S) и двух внешних (P и L) колец, нанизанных на соединенный с крюком стержень.

В состав базального тела также входит экспортная система, транспортирующая белковые элементы для сборки жгутика.

Структура базального мотора

В состав M-S-комплекса входят движущиеся структуры, называемые ротором, и переключатель направления вращения, который на более подробных схемах строения обозначают как С-кольцо. Вокруг ротора сосредоточены образованные белками MotAB ионные каналы – статоры. Мотор работает за счет энергии протонного (H+) или натриевого (Na+) градиента.

Расположение кольцевых субъединиц в клеточной оболочке соответствует следующей схеме:

  • “М” – цитоплазматическая мембрана;
  • “S” – периплазматическое пространство или клеточная стенка у Г+-бактерий;
  • “P” – пептидогликановый слой;
  • “L” – наружняя мембрана.

Внешние кольца P и L неподвижны и выполняют поддерживающую функцию. У грамположительных бактерий они отсутствуют.

Жгутик ядерной клетки

Эукариотический жгутик представляет собой цитоплазматический вырост клетки, состоящий из окруженной мембраной внешней части (ундулиподия) и погруженного в цитоплазму базального тела (кинетосомы).

Структурной основой ундулиподия является аксонема, состоящая из системы связанных друг с другом белковых цилиндров – микротрубочек. Их расположение соответствует формуле 9×2+2, – то есть девять периферических дублетов и две одиночные трубочки в центре (синглеты).

Дублеты образованы спаренными цилиндрами А и В, построенными из субъединиц белка тубулина. От каждой А-трубочки в сторону соседней пары отходит динеиновые рукоятки, которые преобразуют энергию АТФ в механическое движение. Дублеты соединены с синглетами радиальными спицами, а друг с другом – нексиновыми связками. Пространство между структурными элементами ундулиподия заполнено цитоплазмой.

https://www.youtube.com/watch?v=KKK-ueKi_M0

Структура кинетосомы представлена девятью триплетами микротрубочек (формула 9+0), которые заякоривают жгутик в эукариотической клетке. Синглеты в базальном теле отсутствуют.

Источник: https://FB.ru/article/379692/jgutiki---eto-poverhnostnyie-lokomotornyie-strukturyi-stroenie-jgutikov-prokariot-i-eukariot

Реснички и жгутики

Функция жгутиков в клетке

Реснички и жгутики — это два разных типа микроскопических придатков на клетках. Реснички встречаются как у животных, так и у микроорганизмов, но не у большинства растений.

Жгутики используются для передвижения бактерий, а также гамет эукариот. И реснички, и жгутики выполняют функции передвижения, но по-разному.

Оба полагаются на динеин, который является моторным белком, и микротрубочки для работы.

Что такое реснички?

Реснички были первыми органеллами, обнаруженными Антони ван Левенгуком в конце 17 века. Он наблюдал подвижные (движущиеся) реснички, «маленькие ножки», которые он описывал как «обитающие на животе» (вероятно, простейшие).

Немобильные реснички наблюдались намного позже с лучшими микроскопами. Большинство ресничек существуют у животных, почти в каждом типе клеток, сохраняющихся у многих видов в эволюции. Тем не менее, некоторые реснички могут быть найдены в растениях в виде гамет.

Реснички состоят из микротрубочек в расположении, называемом ресничной аксонемой, которая покрыта плазматической мембраной. Тело клетки вырабатывает ресничные белки и перемещает их к кончику аксонемы; этот процесс называется внутрисицилярным или внутриглазничным транспортом (IFT).

В настоящее время ученые считают, что примерно 10 процентов генома человека отводится ресничкам и их генезу.

Диапазон ресничек от 1 до 10 микрометров. Эти похожие на волосы органеллы придатков работают как для перемещения клеток, так и для перемещения материалов. Они могут перемещать жидкости для водных видов, таких как моллюски, чтобы обеспечить транспортировку пищи и кислорода.

Реснички помогают с дыханием в легких животных, предотвращая проникновение в организм мусора и потенциальных патогенов. Реснички короче жгутиков и концентрируются в значительно большем количестве.

Они имеют тенденцию двигаться быстрым ударом почти в одно и то же время в группе, создавая волновой эффект. Реснички также могут помочь в передвижении некоторых видов простейших.

[attention type=green]

Существуют два типа ресничек: подвижные (движущиеся) и неподвижные (или первичные) реснички, и оба работают через системы IFT. Подвижные реснички находятся в дыхательных путях и легких, а также внутри уха. Немобильные реснички находятся во многих органах.

[/attention]

Что такое жгутики?

Жгутики — это придатки, которые помогают перемещать бактерии и гаметы эукариот, а также некоторые простейшие. Жгутики имеют тенденцию быть единичными, как хвост. Они обычно длиннее ресничек. У прокариот жгутики работают как маленькие моторы с вращением. У эукариот они делают более плавные движения.

Функции ресничек

Реснички играют роль в клеточном цикле, а также в развитии животных, например, в сердце. Реснички избирательно позволяют определенным белкам функционировать должным образом. Реснички также играют роль сотовой связи и молекулярного оборота.

Подвижные реснички имеют расположение 9 + 2 из девяти наружных пар микротрубочек, а также центр из двух микротрубочек.

Подвижные реснички используют свою ритмичную волнистость, чтобы смести вещества, например, при очистке от грязи, пыли, микроорганизмов и слизи, чтобы предотвратить заболевание.

Вот почему они существуют на прокладках дыхательных путей. Подвижные реснички могут ощущать и перемещать внеклеточную жидкость.

Немобильные или первичные реснички не соответствуют той же структуре, что и подвижные реснички. Они расположены в виде отдельных придатковых микротрубочек без центральной структуры микротрубочек. У них нет рук динеина, следовательно, их общая неподвижность.

В течение многих лет ученые не фокусировались на этих первичных ресничках и поэтому мало знали об их функциях. Неподвижные реснички служат сенсорным аппаратом для клеток, обнаруживая сигналы. Они играют решающую роль в сенсорных нейронах.

[attention type=yellow]

Неподвижные реснички можно обнаружить в почках для определения потока мочи, а также в глазах на фоторецепторах сетчатки.

[/attention]

В фоторецепторах они функционируют для транспортировки жизненно важных белков от внутреннего сегмента фоторецептора к внешнему сегменту; без этой функции фоторецепторы умрут. Когда реснички ощущают поток жидкости, это приводит к изменениям роста клеток.

Реснички обеспечивают не только клиренс и сенсорные функции. Они также обеспечивают местообитания или районы пополнения для симбиотических микробиомов у животных.

У водных животных, таких как кальмары, эти эпителиальные ткани слизи можно наблюдать более непосредственно, поскольку они являются общими и не являются внутренними поверхностями.

На тканях организма-хозяина существует два вида популяций ресничек: один с длинными ресничками, которые распространяются вдоль мелких частиц, таких как бактерии, но исключают более крупные, и более короткие биения ресничек, которые смешивают жидкости окружающей среды. Эти реснички работают, чтобы набрать симбионтов микробиома.

Они работают в зонах, которые перемещают бактерии и другие крошечные частицы в защищенные зоны, одновременно смешивая жидкости и облегчая химические сигналы, чтобы бактерии могли колонизировать желаемую область. Поэтому реснички работают для фильтрации, очистки, локализации, отбора и агрегации бактерий и контроля адгезии для ресничных поверхностей.

Также было обнаружено, что реснички участвуют в везикулярной секреции эктосом. Более поздние исследования выявили взаимодействия между ресничками и клеточными путями, которые могли бы обеспечить понимание клеточной коммуникации, а также болезней.

Функции жгутика

Жгутики можно найти у прокариот и эукариот. Они представляют собой длинные нити-органеллы, состоящие из нескольких белков, длина которых достигает 20 микрометров от их поверхности у бактерий.

Как правило, жгутики длиннее ресничек и обеспечивают движение и движение. Бактериальные двигатели жгутиковых жгутиков могут вращаться со скоростью 15 000 оборотов в минуту (об / мин).

[attention type=red]

Способность жгутиков плавать помогает в их функции, будь то для поиска пищи и питательных веществ, размножения или вторжения хозяев.

[/attention]

У прокариот, таких как бактерии, жгутики служат движущими механизмами; они — главный способ для бактерий плавать через жидкости.

Жгутик у бактерий обладает ионным двигателем для вращающего момента, крючком, который передает крутящий момент двигателя, и нитью, или длинной хвостоподобной структурой, которая продвигает бактерию.

Двигатель может вращаться и влиять на поведение нити, изменяя направление движения бактерии. Если жгутик движется по часовой стрелке, он образует суперспираль; несколько жгутиков могут образовывать пучок, и они помогают продвигать бактерию по прямой линии.

При вращении в обратном направлении нить образует более короткую суперкатушку, а пучок жгутиков разбирается, что приводит к переворачиванию. Из-за отсутствия высокого разрешения для экспериментов ученые используют компьютерное моделирование для прогнозирования движения жгутиков.

Количество трения в жидкости влияет на то, как нить будет перематываться. Бактерии могут содержать несколько жгутиков, например, с кишечной палочкой. Жгутики позволяют бактериям плавать в одном направлении и затем поворачиваться по мере необходимости.

Это работает с помощью вращающихся спиральных жгутиков, которые используют различные методы, включая циклы толкания и вытягивания. Другой метод движения достигается путем обертывания тела клетки в пучок. Таким образом, жгутики могут также помочь обратить вспять движение.

Когда бактерии сталкиваются с трудными пространствами, они могут изменить свое положение, позволяя жгутикам переконфигурировать или разбирать их пучки. Этот полиморфный переход между состояниями допускает разные скорости, при этом состояния push и pull обычно бывают быстрее, чем состояния обтекания.

[attention type=green]

Это помогает в разных средах; например, спиральный пучок может перемещать бактерии через вязкие области с помощью штопора. Это помогает в бактериальной разведке.

[/attention]

Жгутики обеспечивают движение для бактерий, но также обеспечивают механизм для патогенных бактерий, чтобы помочь в колонизации хозяев и, следовательно, передаче заболеваний. Жгутики используют метод скручивания и прикрепления, чтобы закрепить бактерии на поверхности. Жгутики также функционируют как мосты или каркасы для адгезии к ткани хозяина.

Эукариотические жгутики расходятся от прокариот по составу. Жгутики у эукариот содержат гораздо больше белков и имеют некоторое сходство с подвижными ресничками, с теми же общими движениями и контролем.

Жгутики используются не только для движения, но и для содействия клеточному питанию и эукариотическому размножению. Жгутики используют внутрифлагеллярный транспорт, который является транспортом комплекса белков, необходимых для сигнальных молекул, которые дают подвижность жгутиков.

Жгутики существуют на микроскопических организмах, таких как простейшие Mastigophora, или они могут существовать внутри более крупных животных. Многие микроскопические паразиты также обладают жгутиками, способствуя их прохождению через организм хозяина.

Жгутики этих простейших паразитов также несут парафлагеллярный стержень или PFR, который способствует прикреплению к переносчикам, таким как насекомые. Некоторые другие примеры жгутиков у эукариот включают хвосты гамет, такие как сперма.

Жгутики можно также найти в губках и других водных видах; жгутики у этих существ помогают перемещать воду для дыхания. Эукариотические жгутики также служат почти крошечными антеннами или сенсорными органеллами. Ученые только сейчас начинают понимать широту функций для эукариотических жгутиков.

Заболевания, связанные с ресничками

Недавние научные открытия показали, что мутации или другие дефекты, связанные с ресничками, вызывают ряд заболеваний. Эти условия называются цилиопатиями. Они глубоко влияют на людей, которые страдают от них.

Некоторые цилиопатии включают когнитивные нарушения, дегенерацию сетчатки, потерю слуха, аносмию (потерю обоняния), черепно-лицевые аномалии, аномалии легких и дыхательных путей, лево-правую асимметрию и связанные с ними дефекты сердца, кисты поджелудочной железы, заболевания печени, бесплодие, полидактилию и почечные аномалии. такие как кисты, среди других. Кроме того, некоторые виды рака связаны с цилиопатиями.

[attention type=yellow]

Некоторые заболевания почек, связанные с дисфункцией ресничек, включают нефронофтиз и как аутосомно-доминантное, так и аутосомно-рецессивное поликистозное заболевание почек. Неисправные реснички не могут остановить деление клеток из-за отсутствия обнаружения потока мочи, что приводит к развитию кисты.

[/attention]

При синдроме Картахенера дисфункция рукава динеина приводит к неэффективному очищению дыхательных путей от бактерий и других веществ. Это может привести к повторным респираторным инфекциям.

При синдроме Бардета-Бидля порок развития ресничек приводит к таким проблемам, как дегенерация сетчатки, полидактилия, нарушения головного мозга и ожирение.

Ненаследственные заболевания могут быть вызваны повреждением ресничек, например, остатками сигарет. Это может привести к бронхиту и другим проблемам.

Патогены также могут вызывать нормальное симбиотическое размножение бактерий ресничками, например, у видов Bordetella, что приводит к уменьшению биения ресничек и, следовательно, позволяет патогену прикрепляться к субстрату и приводить к инфекции дыхательных путей человека.

Заболевания, связанные с жгутиком

Ряд бактериальных инфекций связан с функцией жгутиков. Примеры патогенных бактерий включают Salmonella enterica, Escherichia coli, Pseudomonas aeruginosa и Campylobacter jejuni. Происходит ряд взаимодействий, которые приводят бактерии к проникновению в ткани хозяина. Жгутики действуют как связывающие зонды, ища покупку на субстрате хозяина.

Некоторые фитобактерии используют свои жгутики для прилипания к тканям растений. Это приводит к тому, что такие продукты, как фрукты и овощи, становятся вторичными хозяевами бактерий, которые заражают людей и животных. Одним из примеров является Listeria monocytogenes, и, конечно, E.

coli и Salmonella являются печально известными агентами болезней пищевого происхождения.

[attention type=red]

Helicobacter pylori использует свой жгутик, чтобы проплыть через слизь и проникнуть в слизистую оболочку желудка, уклоняясь от защитной желудочной кислоты.

[/attention]

Слизистые оболочки работают как иммунная защита, чтобы задержать такое проникновение, связывая жгутики, но некоторые бактерии находят несколько способов избежать распознавания и захвата.

Нити жгутиков могут разлагаться, так что хозяин не может их распознать или их экспрессия и подвижность могут быть отключены.

Синдром Kartagener также влияет на жгутики. Этот синдром разрушает руки динеина между микротрубочками. Результатом является бесплодие из-за того, что сперматозоидам не хватает движущей силы, необходимой жгутикам, чтобы плавать и оплодотворять яйца.

По мере того, как ученые узнают больше о ресничках и жгутиках и выясняют их роль в организмах, должны следовать новые подходы к лечению болезней и производству лекарств.

Как прокариотические, так и эукариотические клетки могут содержат структуры, известные как реснички и жгутики. Эти выросты на поверхности клеток помогают в их движение.

Особенности и функции

Реснички и жгутики являются выростами из некоторых клеток необходимые для клеточной локомоции (передвижения). Они также помогают перемещать вещества вокруг клеток и направлять их к нужным участкам.

Реснички и жгутики образуются из специализированных групп микротрубочек, называемых базальными телами.

Если выросты короткие и многочисленные, их называют ресничками. Если они длиннее и менее многочисленны (обычно только один или два), они называются жгутиками.

Строение

Обычно реснички и жгутики имеют сердцевину, состоящую из микротрубочек, соединенных с плазматической мембраной, расположенных по схеме 9+2. Кольцо из девяти микротрубочек имеет в своем центре две особые микротрубочки, которые сгибают реснички или жгутики. Этот тип организации встречается в устройстве большинства ресничек и жгутиков эукариотических клеток.

Где встречаются?

Как реснички, так и жгутики встречаются во многих типах клеток. Например, у спермы многих животных, водорослей и даже папоротников есть жгутики. Реснички можно найти в клетках таких тканей, как дыхательные пути и женский репродуктивный тракт.

Источник: https://antetik.ru/resnichki-i-zhgutiki/

19. Жгутики. Расположение и функции

Функция жгутиков в клетке

Жгутик– это поверхностная структурабактериальной клетки, которая служитим для движения в жидких средах.

Взависимости отрасположенияжгутиков, бактерии делятся на

1.Полюсныежгутики – одинили более жгутиков расположены на одномили обоих полюсах клетки и основаниепараллельно длинной оси клетки.

2.Подполюсныежгутики – одинили более жгутиков расположены в местеперехода боковой поверхности в полюсклетки на одном или двух ее концах. Восновании – прямой угол с длинной осьюклетки.

3.Боковыежгутики – одинили более жгутиков в виде пучка расположеныв средней точке одной из половин клетки.

4.Перитрихиальныежгутики –расположены по всей поверхности клеткипо одному или пучками, полюса обычно ихлишены.

5.Смешанныежгутики –два или несколько жгутиков расположеныв разных точках клетки.

Взависимости от числажгутиков, различают:

1)Атрихи – это бактерии без жгутиков.

2)Монотрихи- один полярно расположенныйжгутик

3)Лофотрихи-пучок жгутиков на одномконце. 

4)Амфитрихи – пучки жгутиков с двухконцов. 

5)Перитрихи- множество жгутиков вокругклетки. этобактерии.

20. Строение жгутика у грамположительных и грамотрицательных бактерий. Синтез жгутика

Филамент —полая белковая нить, состоящая изфлагеллина, субъединицы которого уложеныпо спирали. Полость внутри используетсяпри синтезе жгутика — он происходит внаправлении от плазматической мембраны.

По полости к собираемому в настоящиймомент участку переносятся субъединицыфлагеллина.Филамент жгутика – это относительножесткая белковая спираль, закрученнаяпротив часовой стрелки с образованиемцентрального полого канала диаметромдо 3 нм.

Такая конструкция способствуетформированию спиральной траекториидвижения нити.

Крюк —белковое образование. Крюксоединяет нить с базальным телом жгутикаи состоит из двух типов белка.

Базальноетело.Базальное тело представляет собойсистему колец, находящихся в плазматическоймембране и клеточной стенке бактерий.Два внутренних кольца — Mи S-кольца .

Ещё два кольца — Pи L —есть только у грамотрицательных бактерий,неподвижны и лишь направляют стерженьротора мотора.

Вокруг MS-кольцарасположены статоры —белковые комплексы MotA4/MotB4,представляющие собой протонный канал (ихможет быть от 8 до 16).

Большинствоисследователей полагает, что поступлениепротона из периплазмы или внешней средыв MotA4/MotB4 комплексвызывает конформационные изменениябелков, благодаря электростатическомувзаимодействию или прямому контактуэто изменение приводит к поворотуMS-кольца, а его дальнейшее движениевозвращает исходную конформациюкомплексу и выталкивает протон вцитозоль.

Вращениежгутика в клеточной стенке происходитиз-за вращательного движения колец S иМ относительно друг друга и обеспечиваетсяза счет энергии трансмембранногоградиента ионов водорода или натрия.

Синтезжгутика

21. Скольжение, как тип движения бактерий

Скольжение— движение отдельных бактериальныхклеток или их колоний по твёрдойповерхности вдоль их длинной оси безучастия бактериальных жгутиков. Движениепроисходит без использования жгутиков. 

Характернодля бактерий, имеющих слизистый чехол.За счет слизи клетка скользит поповерхности и передвигается.

Клеткинекоторых фототрофов содержат наповерхности фибриллы или филаменты,при сокращении которых во внешнеймембране возникают волны, за счет которыхклетка движется.

[attention type=green]

В оболочках некоторыхклеток присутствуют кольцеобразныебелковые комплексы, которые могутвращаться, что способствует движениюклеток. Разница в поверхностном натяженииможет двигать клетки, которые выделяютповерхностно-активные вещества с одногоконца клетки.

[/attention]

На разных концах клеткивозникают различия в величинеповерхностного натяжения, которые итолкают ее вперед. Многие бактериивыделяют наружу сахара. Смешиваясьс водой, сахара образуют слизь. Слизьоблегчает движение клеток по твердойповерхности при использовании жгутиков.

Представителигруппы практически всегда не имеютпилей. Установлено, что их движениепроисходит не за счёт энергии АТФ, а засчёт протон-движущей силы. Помимо того,что многие выделяют слизь и передвигаютсяза счёт этого.

Предполагается, что онидвижутся благодаря сокращению и удлинениюфибрилл в цитоплазме или периплазме,благодаря моторам жгутиков, утратившихфиламент, или благодаря движению белковвнешней мембраны вдоль «конвейерныхлент» белков внутренней.

Источник: https://studfile.net/preview/7602979/page:13/

Функция жгутиков в клетке

Функция жгутиков в клетке

Жгутик (лат. Flagellum) — поверхностная и внеклеточная структура, присутствует во многих прокариот и эукариот, что служит для передвижения в жидкой среде или поверхностью влажных твердых сред.

Жгутики прокариот и эукариот резко отличаются по своему строению, например, бактерильний жгутик имеет толщину 10-20 нм и длину 3-15 мкм, он пассивно вращается расположенным в мембране мотором; тогда как жгутики эукариот имеют толщину до 200 нм и длину до 200 мкм, они могут самостоятельно изгибаться по всей длине.

У эукариот часто также присутствуют реснички, идентичные по своему строению жгутика, но короче (до 10 мкм), вместе они называются ундулиподиямы.

Жгутики бактерий

Жгутики бактерий состоят из трех субструктур:

  • Филамент (фибриллами, пропеллер) — полый белковое волокно толщиной 10-20 нм и длиной 3-15 мкм, состоящий из белков FlaA (флагеллина) и FlaB, субъединицы FlaA заключены по спирали. Полость внутри используется при синтезе жгутика — он происходит в направлении от цитоплазматической мембраны. Полостью к участку, что собирается на данный момент, переносятся субъединицы флагеллина.
  • Крючок — образование, толще, чем филамент (20-45 нм), составленное из белка FlgE (возможно, также других белков).
  • Базальное мотор (базальное тело).

Базальное мотор и механизм его работы

Базальное мотор представляет собой систему колец, находящихся в цитоплазматической и внешний мембранах и в клеточной стенке бактерии.

Два внутренних кольца — M (белок FliF) и S (белки FliG, FliM, FliN) (также рассматриваются как единое MS-кольцо) — являются обязательными элементами, причем M-кольцо находится в цитоплазматической мембране, а S — в периплазматическое грамм -негативных и пептидогликановый слое грамположительных бактерий. Еще два кольца — P и L (белки FlgH, FlgI) — присутствуют только в грамм-отрицательных бактерий, они расположены в пептидогликановый слое и наружной мембране соответственно, неподвижные и только направляют стержень ротора двигателя. Вокруг MS-кольца расположены статоры — белковые комплексы MotA 4 / MotB 4 (в других видах вместо них могут быть белки PomA, PomB, MotX и MotY), каждый из этих комплексов имеет протонный канал (их может быть от 8 до 16).

Механизм работы жгутикового мотора очень сильно напоминает механизм работы трансмембранной части АТФ-синтазы или F 1 F 0, комплекса, синтезирует АТФ и присутствует во всех живых клетках.

Существует теория, что эволюционно Базальное мотор происходит именно от АТФ-синтазы, скомбинувалася в процессе эволюции с системой секреции белков 3 типа.

Особенностью этого мотора является возможность (в большинстве видов) работы в любом направлении и быстрое переключение между направлениями работы.

Энергия для работы мотора приобретается за счет электрического потенциала через цитоплазматическую мембрану. Мотор пропускает протоны с периплазматическое (или внешней среды) в цитоплазму.

Некоторые бактерии используют ионы натрия вместо протонов (некоторые морские бактерии рода Vibrio, алкалофильного Bacillus, Acetobacterium woodii). Эти ионы должны пройти через канал, расположенный частично в статоре (точнее, белка FliG), а частично в роторе мотора (MotA, MotB).

[attention type=yellow]

Так как часть Калалы параллельная мембране и направления вращения, электрический потенциал, толкает ион вдоль направления электрического поля, вращает ротор относительно статора. Например, в Escherichia coli для одного оборота жгутика требуется перемещение около 1000 протонов.

[/attention]

Показано, что жгутик может работать даже в пустых клеточных оболочках при наличии электрического потенциала на мембране. Жгутик может вращаться с скорость и до 100 об / сек, при этом направление вращения может изменяться менее чем за 0,1 сек.

Механизм движения клетки

Вращения мотора вызывает пассивное вращения филамента. Массивная клетка начинает вращаться примерно со скоростью 1/3 от скорости жгутика в обратном направлении, а также приобретает поступательного движения.

Подавляющее большинство наделенных жгутиком бактерий имеют палочковидную форму. С гидродинамических расчетов получается, что для эффективного движения отношение длины клетки к ширине должно составлять 3,7.

Движение кокков крайне неэффективен, поэтому они чаще неподвижны.

Некоторые бактерии, например, спирохеты, имеют жгутики, расположенные в периплазматическое бактерий (так называемые продольные филаменты), движение жгутиков заставляет всю бактерию менять свою форму, за счет чего она и движется.

Скорости движения бактерий варьируют от 20 мкм / с в некоторых Bacillus до 200 мкм / с в Vibrio.

Регуляция движения

У ряда бактерий мотор и жгутик могут вращаться только в одном направлении, переориентация направления движения бактерии происходит при остановке за счет броуновского движения.

Для большинства бактерий важна внутрищня асимметрия жгутиков и возможность мотора вращаться в двух направлениях. Бактерии-перитрихи собирают при движении все свои жгутики (каждый из которых вращается против часовой стрелки) в один пучок.

Моторы большую часть времени вращаются в одном направлении, но время от времени один из моторов на короткое время меняет направление вращения, этого обычно достаточно, чтобы распался весь пучок. В этот момент начинается так завний «танец» бактерии, когда она хаотично дрыгается на месте.

[attention type=red]

После этого, когда все моторы снова начинают вращаться в одном направлении, жгутики снова собираются в пучок и бактерия движется в новом направлении.

[/attention]

При полярном расположении жгутиков один из них может толкать бактерию, а другой тянуть и наоборот, в зависимости от направления вращения.

Жгутики архей

Жгутики архей относительно достаточно подобные бактериальных жгутиков. В 1980-х годах они даже считались гомологичными на основании подобной морфологии и поведения (Cavalier-Smith, 1987).

Как и у бактерий, жгутики архей состоят из филаментов, которые тянутся за пределами клетки и вращаются, двигая клетку.

Однако исследования 1990-х годов выявили многочисленные детальные различия между жгутиками архей и бактерий, например:

  • Бактериальные жгутики работают за счет пропускания в цитоплазму протонов H + (иногда ионов натрия Na +), архейни жгутики почти наверняка тратят энергию АТФ. Хотя мотор архей все еще не исследован.
  • В то время, когда бактериальные клетки часто имеют много жгутиков, каждый из которых вращается независимо архейни жгутики состоят из пучка многих филаментов, которые вращаются как единое целое.
  • Бактериальные жгутики растут пополнением субъединиц флагеллина на наконечнике, архейни жгутики растут достройкой судодиниць к основанию.
  • Бактериальные жгутики толще от архейних, и бактериальный филаминт имеет достаточно широкий простор внутри, через который субъединицы поставляются для роста жгутика, архейни жгутики слишком тонкие, чтобы позволить это.
  • Гены многих компонентов бактериальных жгутиков имеют некоторое сходство последовательности ДНК к компонентам системы секреции 3 типа, но компоненты бактериальных и архейних жгутиков не разделяют никакого сходства в последовательности. В свою очередь, некоторые компоненты архейних жгутиков разделяют последовательность и морфологическое сходство с компонентами ворсинок 4 типа, которые собираются с помощью системы секреции 2 типа (номенклатура ворсинок / пили и систем секреции белка не последовательная).

Эти различия означают, что бактериальные и архейни жгутики — классический случай конвергентной эволюции, а не гомологии.

Однако, в сравнении с десятилетия детального изучения бактериальных жгутиков (например Говардом Бергом), архейни жгутики только недавно начали получать серьезную научную внимание.

Поэтому многие все еще помолково считает, что существует только один основной вид жгутиков прокариот, и архейни жгутики принадлежат к нему.

Жгутики эукариот

Жгутики эукариот — совершенно другая структура, чем жгутики бактерий и архей, и имеют совсем другое эволюционное происхождение. Единственная общая черта между бактериальными, архейнимы и эукариотическими жгутиками — их внешний вид, то, что они все — внеклеточные структуры, используемые для движения. Вместе с ресничками они составляют группу органелл, известных как ундулиподии.

Жгутик эукариот представляет собой пучок из девяти связанных пар микротрубочек, окружающих две центральные микротрубочки. Так называемая структура «9 + 2» — характеристика ядра жгутика эукариот, аксонема (или продольного филаманту).

В основе эукариотического жгутика находится «базальное тело» (также известное как «блефаропласт» или «кинетосомах»), которое является организационным ценром микротрубочек и составляет около 500 нм в длину. Базальное тело по структуре идентично центриоли.

Жгутик эукариот начинается в пределах цитоплазматической мембраны клетки, таким образом, что внутренний канал жгутика доступен для цитоплизмы.

Каждая из внешних 9 пар микротрубочек имеет пару динеинових рукояток («внутреннюю» и «внешнюю») в соседнюю микротрубочки, эти рукоятки отвечают за движение жгутика, поскольку сила, виробяеться ними, заставляет пары микротрубочек скользить друг против друга, и жгутик сгибается как одно целое.

Эти динеинови рукоятки получают энергию за счет гидролиза АТФ. Аксонема жгутика также содержит «радиальные спицы», полипептидные комплексы, тянущиеся от каждой из зовништих 9 пар микротрубочек по направлению к центральной пары, с «головой» спицы, направленных внутрь. Считается, что радиальные спицы участвуют в регулировании движения жгутика, хотя их точное функция и метод действия еще не известны.

Подвижные жгутики служат для движения отдельных клеток (например, плавающих простейшие и сперматозоидов) и транспорта жидкостей (например, транспорт слизи стационарными клетками в трахеи).

[attention type=green]

В дополнение к этому, неподвижные жгутики — жизненно важные органеллы в органах чувств и передачи сигналов в большом количестве типов клеток (например, фоторецепторные палочки глаза, обонятельные нейроне носа, киносилиум в улитке уха).

[/attention]

Внутришньоджгутиковий транспорт (ВДТ, IFT), процесс, при котором субъединицы аксонема, трансмембранные рецепторы и другие белки продвигаются увздовж жгутика, существенный для надлежащего функционирования жгутика, как движения, так и передачи сигналов.

Изображения по теме

Источник: info-farm.ru

Источник: https://naturalpeople.ru/funkcija-zhgutikov-v-kletke/

Бактерии со жгутиками: строение, функции, виды, расположение

Функция жгутиков в клетке

Существует большое количество микробов со жгутиками. Жгутики бактерий являются их характерными признаками, и они по этому принципу объединяются в таксономические единицы. Благодаря отросткам эти организмы способны совершать сокращения клетки и таким образом двигаться.

Для чего бактериям жгутики

Эти структурные элементы клетки определяют ее подвижность. Чаще всего это тонкие нити, которые берут свое начало еще от цитоплазматической мембраны. Некоторые виды микробов имеют существенно больший жгутик, чем сама клетка-хозяин.

Отростки способны проталкивать клетку в жидкой среде. Строение жгутика таково, что он может быстро перемещать тело-клетку, и при этом она будет преодолевать сравнительно большие расстояния. Движения эти совершаются по принципу пропеллера. Чтобы перемещаться, микробы используют один или несколько отростков.

У некоторых микробов отростки могут быть дополнительным фактором патогенности (болезнетворности). Это можно объяснить с тем, что он способствует приближению патогенного микроорганизма к здоровой клетке.

Из чего состоят жгутики

Эти части микроорганизма представляют собой спирально закрученные нити. Они имеют разную толщину и длину, а также амплитуду витка. Некоторые бактерии с жгутиками имеют сразу несколько разновидностей этих органов.

Состоят эти элементы клетки из специального белка – флагеллина. Он имеет сравнительно небольшую молекулярную массу. Это позволяет субъединицам молекул располагаться по спирали и таким образом составлять строение отростка определенной длины.

Кроме нити, жгут имеет крюк возле поверхности клетки, а также базальное тельце. С помощью такого тельца он надежно закрепляется в клетке.

Что такое ворсинки

Ворсинки иначе называются пили. Они присутствуют в разных организмах. Расположение этих структурных элементов бактериальной клетки различно. Обычно это цилиндры белковой природы, имеющие длину до 1,5 микрометра и диаметр до 1 микрометра. В одном микроорганизме могут быть пили нескольких видов.

Функции этих образований до конца еще не определены. Известно, что отдельные разновидности микробов имеют ворсинки. Наиболее очевидная роль, которую выполняют пили – прикрепление к субстрату и передвижение в среде.

Больше всего данных собрано о кишечных палочках, имеющих ворсинки-пили. Однако существует огромное количество микроскопических организмов, у которых строение ворсинок еще до конца не определено. Во всяком случае, бактериальные пили способствуют эффективному передвижению клеток.

Какие различия имеют жгутиковые микроорганизмы

В зависимости от количества и способа расположения все микроскопические организмы разделяют на такие типы:

  1. Монотрихи. Это бактерии с одним жгутиком.
  2. Лофотрихи. У этих клеток на конце есть пучок отростков.
  3. Перитрихи. Такие микробы имеют много отростков по всей поверхности.
  4. Амфитрихи. У этих микроорганизмов двустороннее, или биполярное расположение жгутиков.

Жгутики прокариот

У бактерий-прокариот такие элементы состоят только из одного участка субъединиц флагеллина. Возможно одно- или двустороннее расположение таких элементов. В значительной степени такие части клетки могут определяться различиями жизненного цикла.

У некоторых прокариотических бактерий могут быть пили. Количество этих структурных элементов позволяет бактерии двигаться или прикрепляться к субстрату.

Большинство прокариот имеют отличные приспособления для того, чтобы передвигаться в жидкой среде и тем самым повысить выживаемость при неблагоприятных факторах окружающей среды.

Как определить жгутики

Условно жгутики можно определить по прямому и косвенному методу.

Наблюдение бактерии в микроскоп – это прямое обнаружение этих элементов. Чтобы они были более заметными, применяется окрашивание специальными методами. Еще лучше жгутики заметны в электронный микроскоп.

Косвенно бактерии определяются по факту подвижности клетки. Лучше всего это обнаружить при помощи препарата «раздавленная капля», когда предметное стекло накрывается покровным. Часто для того, чтобы отростки были более заметны, искусственно затемняют поле зрения.

Изучение жгутиковых бактерий и их функций позволяет микробиологам находить способы борьбы с болезнетворными микроорганизмами, а также поле для их применения.

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Источник: https://probakterii.ru/prokaryotes/organelles/bakterii-s-zhgutikami.html

Органоиды движения: функции и строение, особенности движения простейших

Функция жгутиков в клетке

Клетки могут перемещаться при помощи специализированных органоидов, к которым относятся реснички и жгутики. Реснички клеток всегда многочисленны (у простейших их количество исчисляется сотнями и тысячами), а длина составляет 10-15мкм. Жгутиков же чаще всего 1-8, длина их — 20-50мкм.

Строение и функции органоидов движения

Строение ресничек и жгутиков, как у растительных, так и животных клеток сходно.

Под электронным микроскопом обнаружено, что реснички и жгутики это немембранные органоиды, состоящие из микротрубочек.

Две из них располагаются в центре, а вокруг них по периферии лежат еще 9 пар микротрубочек. Вся эта структура покрыта цитоплазматической мембраной, являющейся продолжением клеточной мембраны.

Жгутики и реснички обеспечивают не только передвижение клеток в пространстве, но и перемещение различных веществ на поверхности клеток, а также попадание пищевых частиц в клетку. У основания ресничек и жгутиков находятся базальные тельца, которые тоже состоят из микротрубочек.

Предполагают, что базальные тельца являются центром формирования микротрубочек жгутиков и ресничек. Базальные тельца, в свою очередь, нередко происходят из клеточного центра.

Большое количество одноклеточных организмов и некоторые клетки многоклеточных не имеют специальных органоидов движения и передвигаются при помощи псевдоподий (ложноножек), которое получило название амебоидного. В основе его лежит движение молекул особых белков, называемых сократимыми.

Особенности движения простейших

Одноклеточные организмы также способны передвигаться (инфузория туфелька, эвглена зеленая, амеба обыкновенная). Для перемещения в толще воды каждая особь наделена специфическими органоидами. У простейших такими органоидами являются реснички, жгутики, ложноножки.

Эвглена зелёная

Эвглена зелёная — представитель простейших из класса жгутиковых. Тело эвглены веретенообразной формы, удлиненное с заостренным концом. Органоиды движения эвглены зеленой представлены жгутиком, который находится на тупом конце. Жгутики — это тонкие выросты тела, число которых варьирует от одного до десятков.

Механизм движения при помощи жгутика отличается у разных видов. В основном это вращение в виде конуса, вершина которого обращена к телу. Перемещение наиболее эффективно при достижении углом вершины конуса 45°. Скорость колеблется в пределах от 10 до 40 оборотов за секунду. Часто наблюдается помимо вращательного движения жгутика, также его волнообразные покачивания.

Такой характер движения свойствен для одножгутиковых видов. У многожгутиковых нередко жгутики располагаются в одной плоскости и не формируют конуса вращения.

[attention type=yellow]

Микроскопическое строение жгутиков довольно сложное. Они окружены тонкой оболочкой, которая является продолжением наружного слоя эктоплазмы — пелликулы. Внутреннее пространство жгутика заполнено цитоплазмой и продольно расположенными нитями — фибриллами.

[/attention]

Периферически расположенные фибриллы отвечают за осуществление движения, а центральные выполняют опорную функцию.

Инфузория туфелька

Передвигается инфузория туфелька за счет ресничек, осуществляя ими волнообразные движения. Направляется вперед тупым концом.

Реснички двигаются в одной плоскости и делают прямой удар после полного выпрямления, а возвратный — в выгнутом положении. Удары идут последовательно один за другим с небольшой задержкой. Во время плаванья, инфузория осуществляет вращательные движения вокруг продольной оси.

Реснички инфузории туфельки

Перемещается туфелька со скоростью до 2,5мм/c. Направленность меняется за счёт перегибов тела. Если на пути будет преграда, то после столкновения инфузория начинает двигаться в противоположную сторону.

Все реснички инфузорииимеют сходное строение с жгутиками эвглены зеленой. Ресничка у основания образует базальное зерно, которое играет важную роль в механизме движения организма.

У некоторых инфузорий реснички соединяются между собой и таким образом позволяют развить большую скорость.

Инфузории относятся к высокоорганизованным простейшим и свою двигательную активность они осуществляют с помощью сокращений. Форма тела простейшего может меняться, а после возвращаться в прежнее состояние. Быстрые сократительные движения возможны благодаря наличию особых волокон — мионем.

Амеба обыкновенная

Амеба — простейшее довольно крупных размеров (до 0,5мм). Форма тела полиподиальная, обусловлена наличием множественных псевдоподий — это выросты с внутренней циркуляцией цитоплазмы.

У амебы обыкновенной псевдоподии еще называют ложноножками. Направляя ложноножки в разные стороны, амёба развивает скорость в 0,2 мм/минуту.

К органоидам движения простейших не относятся цитоплазма, ядро, вакуоли, рибосомы, лизосомы, ЭПР, Аппарат Гольджи.

Оцените, пожалуйста, статью. Мы старались:) (3 4,00 из 5)
Загрузка…

Источник: https://animals-world.ru/organoidy-dvizheniya/

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: