Химическая передача нервного импульса

Классификации синапсов

Химическая передача нервного импульса

Механизмывзаимодействия нервных клеток

Нервныеклетки функционируют в тесномвзаимодействии друг с другом.

Значениенервных импульсов. Все взаимодействиямежду нервными клетками осуществляютсяблагодаря двум механизмам: 1) влияниямэлектрических полей нервных клеток(электротоническим влияниям) и 2) влияниямнервных импульсов.

Первыераспространяются на очень небольшиетерритории мозга Электрический заряднервной клетки создает вокруг нееэлектрическое поле, колебания котороговызывают изменения электрических полейлежащих рядом нейронов, что приводит кизменениям их возбудимости, лабильностии проводимости. Электрическое поленейрона имеет сравнительно небольшуюпротяженность—около 100 мк, оно быстрозатухает по мере удаления от клетки иможет оказывать воздействие лишь насоседние нейроны.

Второймеханизм обеспечивает не только ближайшиевзаимодействия, но и передачу нервныхвлияний на большие расстояния. Именнос помощью нервных импульсов происходитобъединение отдаленных и изолированныхучастков мозга в общую, синхронноработающую систему, что необходимо дляпротекания сложных форм деятельностиорганизма.

Нервный импульс, следовательно,является основным средством связи междунейронами. Высокая скорость распространенияимпульсов и локальное их воздействиена избранную точку мозга способствуютбыстрой и точной передаче информациив нервной системе. В межнейронныхвзаимодействиях используется частотныйкод, т. е.

изменения функциональногосостояния и характера ответных реакцийодной нервной клетки кодируютсяизменением частоты импульсов (потенциаловдействия), которые она посылает к другойнервной клетке.

Общее количествоимпульсов, отправляемых нервной клеткойв единицу времени, или ее суммарнаяимпульсная активность,—важныйфизиологический показатель деятельностинейрона.

Синапс

[attention type=yellow]

Основныеэлементы химического синапса: синаптическаящель, везикулы (синаптическиепузырьки), нейромедиаторы,рецепторы.

[/attention]

Си́напс[1] (греч. σύναψις,от συνάπτειν —обнимать, обхватывать, пожимать руку) —место контакта между двумянейронами илимежду нейроном и получающейсигнал эффекторной клеткой.

Служит для передачи нервногоимпульса междудвумя клетками, причём в ходе синаптическойпередачи амплитуда и частота сигналамогут регулироваться.

Передача импульсовосуществляется химическим путём спомощью медиаторов или электрическимпутём посредством прохождения ионовиз одной клетки в другую.

Терминбыл введён в 1897 г.английским физиологом ЧарльзомШеррингтоном.Однако сам Шеррингтон утверждал, чтополучил идею этого термина в разговореот физиолога МайклаФостера[2].

Основныеэлементы электрического синапса(эфапса): а — коннексон в закрытомсостоянии; b — коннексон в открытомсостоянии; с — коннексон, встроенныйв мембрану; d — мономер коннексина,е —плазматическаямембрана;f — межклеточное пространство; g —промежуток в 2-4 нанометра в электрическомсинапсе; h — гидрофильный каналконнексона.

По механизму передачи нервного импульса

  • химический — это место близкого прилегания двух нервных клеток, для передачи нервного импульса через которое клетка-источник выпускает в межклеточное пространство особое вещество, нейромедиатор, присутствие которого в синаптической щели возбуждает или затормаживает клетку-приёмник.
  • электрический (эфапс) — место более близкого прилегания пары клеток, где их мембраны соединяются с помощью особых белковых образований — коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе — 3,5 нм (обычное межклеточное — 20 нм). Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы через синапс проходят не задерживаясь. Электрические синапсы обычно бывают возбуждающими.
  • смешанные синапсы — Пресинаптический потенциал действия создает ток, который деполяризуетпостсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболеераспространены химические синапсы. Длянервной системы млекопитающихэлектрические синапсы менее характерны,чем химические.

По местоположению и принадлежности структурам[править | править вики-текст]

  • периферические
    • нервно-мышечные
    • нейросекреторные (аксо-вазальные)
    • рецепторно-нейрональные
  • центральные

    • аксо-дендритические — с дендритами, в том числе
      • аксо-шипиковые — с дендритными шипиками, выростами на дендритах;
    • аксо-соматические — с телами нейронов;

    • аксо-аксональные — между аксонами;

    • дендро-дендритические — между дендритами;

Различныеварианты расположения химическихсинапсов

По нейромедиатору

  • аминергические, содержащие биогенные амины (например, серотонин, дофамин);
    • в том числе адренергические, содержащие адреналин или норадреналин;
  • холинергические, содержащие ацетилхолин;

  • пуринергические, содержащие пурины;

  • пептидергические, содержащие пептиды.

Приэтом в синапсе не всегда вырабатываетсятолько один медиатор. Обычно основноймедиатор выбрасывается вместе с другим,играющим роль модулятора.

По знаку действия

Еслипервые способствуют возникновениювозбуждения в постсинаптической клетке(в них в результате поступления импульсапроисходит деполяризация мембраны,которая может вызвать потенциал действияпри определённых условиях.

), то вторые,напротив, прекращают или предотвращаютего появление, препятствуют дальнейшемураспространению импульса.

Обычнотормозными являются глицинергические(медиатор — глицин)и ГАМК-ергические синапсы(медиатор — гамма-аминомаслянаякислота).

Тормозныесинапсы бывают двух видов: 1) синапс, впресинаптических окончаниях котороговыделяется медиатор, гиперполяризующий постсинаптическуюмембрану и вызывающий возникновениетормозного постсинаптического потенциала;2) аксо-аксональный синапс, обеспечивающийпресинаптическое торможение. Синапсхолинергический (s. cholinergica) — синапс,медиатором в котором является ацетилхолин.

Внекоторых синапсах присутствует постсинаптическоеуплотнение —электронно-плотная зона, состоящая избелков. По её наличию или отсутствиювыделяют синапсы асимметричные и симметричные.Известно, что все глутаматергические синапсыасимметричны, а ГАМКергические —симметричны.

Вслучаях, когда с постсинаптическоймембраной контактирует несколькосинаптических расширений,образуются множественныесинапсы.

Кспециальным формам синапсовотносятся шипиковыеаппараты,в которых с синаптическим расширениемконтактируют короткие одиночные илимножественные выпячивания постсинаптическоймембраны дендрита.

[attention type=red]

Шипиковые аппаратызначительно увеличивают количествосинаптических контактов на нейроне и,следовательно, количество перерабатываемойинформации. «Не-шипиковые» синапсыназываются «сидячими».

[/attention]

Например, сидячимиявляются все ГАМК-ергические синапсы.

Источник: https://studfile.net/preview/4283597/

Синапс. Физиология мышечных волокон

Химическая передача нервного импульса

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Навигация:

Синапс — это специфическое место контакта двух возбудимых систем (клеток) для передачи возбуждения.

«synapsis» — «соприкосновение, соединение, застежка»

на новости сайта в соцсетях!

Пожалуйста, примите участие в опросах по оценке качества сайта. Важен каждый голос!

По способу передачи сигналов:

  • механические,
  • химические,
  • электрические.

По виду медиатора: холинэргические и др.

Нервно-мышечный синапс (НМС) — химический, передача с помощью медиатора ацетилхолина.

Синонимы к слову НМС:

  • Нервно-мышечное соединение;
  • Моторная концевая пластинка.

Аксоны нервных клеток на своих окончаниях теряют миелиновую оболочку, ветвятся, и концевые веточки аксона утолщаются. Это пресинаптическая терминаль или бляшка или пуговка, которая погружается в углубление на поверхности мышечного волокна.

Покрывающая концевую веточку аксона поверхностная мембрана называется пресинаптической мембраной, т.е. это мембрана, покрывающая поверхность синаптической бляшки (терминали аксона).

Мембрана, покрывающая мышечное волокно в области синапса, называется постсинаптической мембраной, или концевой пластинкой. Она имеет извитую структуру, образуя многочисленные складки, уходящие вглубь мышечного волокна, за счет чего увеличивается площадь контакта.

На постсинаптической мембране находятся белковые структуры — рецепторы, способные связывать медиатор. В одном синапсе количество рецепторов достигает 10-20 млн.

Между пре- и постсинаптическими мембранами находится синаптическая щель, размеры ее в среднем 50 нм, она открывается в межклеточное пространство и заполнена межклеточной жидкостью.

В синаптической щели находится мукополисахаридное плотное вещество в виде полосок, мостиков и содержится фермент ацетилхолинэстераза.

В пресинаптической терминали находится большое количество пузырьков или везикул, заполненных медиатором — химическим веществом посредником, осуществляющим передачу возбуждения.

В нервно-мышечном синапсе медиатор — ацетилхолин (АХ).

[attention type=green]

АХ синтезируется из холина и уксусной кислоты (ацетил-коэнзима А) с помощью фермента холинэстеразы. Эти вещества перемещаются из тела нейрона по аксону к пресинаптической мембране. Здесь в пузырьках происходит окончательное образование АХ.

[/attention]

3 фракции медиатора:

  1. Первая фракция — доступная — располагается рядом с пресинаптической мембраной.
  2. Вторая фракция — депонированная — располагается над первой фракцией.
  3. Третья фракция — диффузно рассеянная — наиболее удаленная от пресинаптической мембраны.

4 этап

Ионы Ca вызывают образование специального белкового комплекса, который включает в себя везикулу и структуры, расположенные непосредственно около пресинаптической мембраны.

Они связаны между собой так называемыми белками экзоцитоза.

Часть белков расположена на везикулах (синапсин, синаптотагмин, синаптобревин), а часть — на пресинаптической мембране (синтаксин, синапсо-ассоциированный белок). Данный комплекс получил название секретосома.

6 этап

Излитию содержимого пузырька в щель способствует белок синаптопорин, формирующий канал, по которому идет выброс медиатора.

Квант медиатора — количество молекул, содержащихся в одной везикуле.

На 1 ПД выбрасывается 100 квантов АХ.

10 этап

На постсинаптической мембране возникает потенциал концевой пластинки (ПКП). Он является аналогом локального ответа (ЛО).

Потенциал действия на постсинаптической мембране не возникает! Он формируется на соседней мембране мышечного волокна.

Судьба медиатора:

  • связывание с рецептором,
  • разрушение ферментов (ацетилхолинэстеразой),
  • обратное поглощение в пресинаптическую мембрану,
  • вымывание из щели и фагоцитоз.

События в синапсе:

  1. ПД приходит к терминали аксона;
  2. Он деполяризует пресинаптическую мембрану;
  3. Ca2+ входит в терминаль, что приводит к выделению АХ;
  4. В синаптическую щель выделяется медиатор АХ;
  5. Он диффундирует в щель и связывается с рецепторами постсинаптической мембраны;
  6. Меняется проницаемость постсинаптической мембраны для ионов Na+;
  7. Ионы Na+ проникают в постсинаптическую мембрану и уменьшают ее заряд — возникает потенциал концевой пластинки (ПКП).

На самой постсинаптической мембране ПД возникнуть не может, так как здесь отсутствуют потенциалзависимые каналы, они являются хемозависимыми!

  1. ПКП суммируются и достигают КУД на соседнем участке мышечного волокна, что приводит к возникновению ПД и его распространению по мышечному волокну (около 5 м/с).

Достигнув пороговой величины, то есть КУД, ПКП возбуждает соседнюю (внесинаптическую) мембрану мышечного волокна за счет местных круговых токов.

Особенности проведения возбуждения в нервно-мышечном синапсе

Одностороннее проведение возбуждения — только в направлении от пресинаптического окончания к постсинаптической мембране.

Суммация возбуждения соседних постсинаптических мембран.

Синаптическая задержка — замедление в проведении импульса от нейрона к мышце составляет 0,5-1 мс. Это время затрачивается на секрецию медиатора, его диффузию к постсинаптической мембране, взаимодействие с рецептором, формирование ПКП, их суммацию.

Низкая лабильность — она составляет 100-150 имп/с для сигнала, что в 5-6 раз ниже лабильности нервного волокна.

Чувствительность к действию лекарственных веществ, ядов, БАВ, выполняющих роль медиатора.

Утомляемость химических синапсов — выражается в ухудшении проводимости вплоть до блокады в синапсе при длительном функционировании синапса. причина утомляемости — исчерпание запасов медиатора в пресинаптическом окончании.

Законы проведения возбуждения по нервам:

  1. Закон функциональной целостности нерва.
  2. Закон изолированного проведения возбуждения.
  3. Закон двустороннего проведения возбуждения.

В зависимости от скорости проведения возбуждения нервные волокна подразделяются на 3 группы: A, B, C. В группе A выделяют 4 подгруппы: альфа, бетта, гамма и сигма.

Физиология мышечных волокон

Три типа мышц:

  • скелетная (40-50% массы тела),
  • сердечная (менее 1%),
  • гладкая (8-9%).

Физиологические свойства скелетных мышц:

  1. Возбудимость — способность отвечать на действие раздражителя возбуждением.
  2. Проводимость — способность проводить возбуждение из места его возникновения к другим участкам мышцы.
  3. Лабильность — способность мышцы сокращаться в соответствии с частотой действия раздражителя (200-300 Гц для скелетной мышцы).
  4. Сократимость — для мышцы является специфическим свойством — это способность мышцы изменять длину или напряжение в ответ на действие раздражителя.

Физические свойства скелетных мышц:

  1. Растяжимость — способность мышцы изменять длину под действием растягивающей силы.
  2. Эластичность — способность мышцы восстанавливать первоначальную длину или форму после прекращения действия растягивающей силы.
  3. Силы мышц — способность мышцы поднять максимальный груз.
  4. Способность мышцы совершать работу.

Режимы сокращения:

  • Изотонический,
  • Изометрический,
  • Ауксотонический.

Изотонический режим — сокращение мышцы происходит с изменением ее длины без изменения напряжения (тонуса) (напр.: сокращение мышц языка).

Изометрический режим — длина постоянная, увеличивается степень мышечного напряжения (тонуса) (напр.: при поднятии непосильного груза).

Ауксотонический режим — одновременно изменяется длина и напряжение мышцы (характерен для обычных двигательных актов).

Механизм сокращения поперечно-полосатых мышц

Любая скелетная мышца состоит из мышечных волокон, которые, в свою очередь, состоят из множества тонких нитей — миофибрилл, расположенных продольно. Каждая миофибрилла состоит из протофибрилл — нитей сократительных белков: миозина (миозиновая протофибрилла), актина (актиновая протофибрилла).

Кроме сократительных белков в миофибрилле имеются два регуляторных белка: тропомиозин и тропонин.

Миозиновые волокна соединены в толстый пучок, от которого в торону актиновых нитей отходят поперечные мостики. У каждого мостика выделяют шейку и головку.

Нить актина располагается в виде 2 скрученных ниток бус. На ней имеются актиновые центры.

Тропомиозин в виде спиралей оплетает поверхность актина, закрывая в покое ее центры. Одна молекула тропомиозина контактирует с 7 молекулами актина.

Тропонин образует утолщение на конце каждой нити тропомиозина.

Под влиянием возникшего в мышечном волокне ПД из саркоплазматического ретикулума (СПР — депо Ca2+) высвобождаются ионы Ca. Кальций связывается с тропонином, который смещает тропомиозиновый стержень, что приводит к открытию актиновых центров.

[attention type=yellow]

В результате, к актиновым центрам присоединяются головки поперечных миозиновых мостиков.

[/attention]

Эти постики совершают «гребущие движения», в результате чего нити актина перемещаются этими мостиками относительно волокон миозина, происходит укорочение мышцы.

Процесс расслабления происходит в обратной последовательности с использованием энергии АТФ за счет функционирования кальциевого насоса.

При отсутствии повторного импульса ионы Ca не поступают из СПР. В результате отсутствия Ca-тропонинового комплекса, тропомиозин возвращается на свое прежнее место, блокируя актиновые центры актина. Актиновые протофибриллы легко скользят в обратном направлении благодаря эластичности мышцы, и мышца удлиняется (расслабляется).

Гладкие мышцы

Гладкие мышцы — это мышцы, формирующие слой стенок полых внутренних органов. Они построены из веретенообразных одноядерных мышечных клеток без поперечной исчерченности за счет хаотичного расположения миофибрилл.

Особенности гладких мышц:

  • Иннервируются волокнами вегетативной нервной системы (ВНС);
  • Обладают низкой возбудимостью:
  • Обладают низкой величиной МП (мембранного потенциала) — -50 — -60 мВ из-за более высокой проницаемости для ионов Na+
  • ПД (потенциал действия) отличается меньшей амплитудой и большей длительностью. Он формируется в основном за счет ионов Ca2+
  • Медленная проводимость:

Клетки в гладких мышцах функционально связаны между собой посредством щелевидных контактов — нексусов, которые имеют низкое электрическое сопротивление. За счет этих контактов ПД распространяется с одного мышечного волокна на другое, охватывая большие мышечные пласты, и в реакцию вовлекается вся мышца.

Гладкие мышцы способны осуществлять относительно медленные ритмические и длительные тонические сокращения.

Медленные ритмические сокращения обеспечивают перемещение содержимого органа из одной области в другую.

Длительные тонические сокращения, особенно сфинктеров полых органов, препятствуют выходу из них содержимого.

Это способность сохранять приданную им при растяжении или деформации форму. Благодаря пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии.

Особенность гладких мышц, отличающая их от скелетных. Благодаря автоматии гладкие мышцы могут сокращаться в условиях отсутствия иннервации. Важную роль в этом играет растяжение.

Растяжение является адекватным раздражителем для гладкой мускулатуры. Сильное и резкое растяжение гладких мышц вызывает их сокращение.

Сравнительная характеристика скелетных и гладких мышц:

Разделы с похожими страницами

Источник: https://medfsh.ru/teoriya/teoriya-po-normalnoy-fiziologii/lektsii-po-normalnoj-fiziologii/sinaps-fiziologiya-myshechnyh-volokon

Нервный импульс, его преобразование и механизм передачи

Химическая передача нервного импульса

Нервная система человека выступает своеобразным координатором в нашем организме. Она передаёт команды от мозга мускулатуре, органам, тканям и обрабатывает сигналы, идущие от них. В качестве своеобразного носителя данных используется нервный импульс. Что он собой представляет? С какой скоростью работает? На эти, а также на ряд других вопросов можно будет найти ответ в этой статье.

Чем является нервный импульс?

Так называют волну возбуждения, что распространяется по волокнам как ответ на раздражение нейронов. Благодаря этому механизму обеспечивается передача информации от различных рецепторов к центральной нервной системе. А от неё, в свою очередь, к разным органам (мышцы и железы).

А что же этот процесс являет собой на физиологическом уровне? Механизм передачи нервного импульса заключается в том, что мембраны нейронов могут менять свой электрохимический потенциал. И интересующий нас процесс совершается в области синапсов. Скорость нервного импульса может меняться в рамках от 3 до 12 метров за секунду.

Более детально о ней, а также о факторах, что на неё влияют, мы ещё поговорим.

Исследование строения и работы

Впервые прохождение нервного импульса было продемонстрировано немецкими учеными Э. Герингом и Г. Гельмгольцем на примере лягушки. Тогда же и было установлено, что биоэлектрический сигнал распространяется с указанной ранее скоростью. Вообще, такое является возможным благодаря особенному построению нервных волокон.

В некотором роде они напоминают электрический кабель. Так, если проводить параллели с ним, то проводниками являются аксоны, а изоляторами – их миелиновые оболочки (они являют собой мембрану шванновской клетки, которая намотана в несколько слоев). Причем скорость нервного импульса зависит в первую очередь от диаметра волокон.

[attention type=red]

Вторым по важности считается качество электрической изоляции. Кстати, в качестве материала организмом используется липопротеид миелин, который обладает свойствами диэлектрика. При прочих равных условиях, чем больше будет его слой, тем быстрее будут проходить нервные импульсы. Даже на данный момент нельзя сказать, что эта система полноценно исследована.

[/attention]

Многое, что относится к нервам и импульсам, ещё остаётся загадкой и предметом исследования.

https://www.youtube.com/watch?v=A_Ns-DZc6Zk

Если говорить про путь нервного импульса, то необходимо отметить, что миелиновой оболочкой волокно покрывается не по всей своей длине. Особенности построения таковы, что сложившуюся ситуацию лучше всего будет сравнить с созданием изолирующих керамических муфт, что плотно нанизываются на стержень электрического кабеля (хотя в данном случае на аксон).

Как результат – есть небольшие неизолированные электрические участки, с которых ионный ток может спокойно вытечь из аксона в окружающую среду (или наоборот). При этом раздражается мембрана. Вследствие этого вызывается генерация потенциала действия в участках, что не изолированы. Этот процесс называется перехватом Ранвье.

Наличие такого механизма позволяет сделать так, чтобы нервный импульс распространялся значительно быстрее. Давайте об этом поговорим на примерах. Так, скорость проведения нервного импульса в толстом миелинизированном волокне, диаметр которого колеблется в рамках 10-20 микрон, составляет 70-120 метров за секунду.

Тогда как у тех, у кого неоптимальная структура, этот показатель меньше в 60 раз!

Где они создаются?

Нервные импульсы возникают в нейронах. Возможность создания таких «посланий» является одним из основных их свойств. Нервный импульс обеспечивает быстрое распространение однотипных сигналов по аксонам на большое расстояние. Поэтому это самое важное средство организма для обмена информацией в нём.

Данные о раздражении передаются с помощью изменения частоты их следования. Здесь работает сложная система периодики, которая может насчитывать сотни нервных импульсов в одну секунду. По несколько подобному принципу, хотя и значительно усложненному, работает компьютерная электроника.

Так, когда нервные импульсы возникают в нейронах, то они кодируются определённым образом, а только потом уже передаются. При этом информация группируется в специальные «пачки», которые имеют разное число и характер следования.

Всё это, сложенное вместе, и составляет основу для ритмической электрической активности нашего мозга, что можно зарегистрировать благодаря электроэнцефалограмме.

Говоря про последовательность прохождения нервного импульса, нельзя обойти вниманием нервные клетки (нейроны), по которым и происходит передача электрических сигналов. Так, благодаря им обмениваются информацией разные части нашего организма. В зависимости от их структуры и функционала выделяют три типа:

  1. Рецепторные (чувствительные). Ими кодируются и превращаются в нервные импульсы все температурные, химические, звуковые, механические и световые раздражители.
  2. Вставочные (также называются кондукторными или замыкательными). Они служат для того, чтобы перерабатывать и переключать импульсы. Наибольшее их число находится в головном и спинном мозге человека.
  3. Эффекторные (двигательные). Они получают команды от центральной нервной системы на то, чтобы были совершены определённые действия (при ярком солнце закрыть рукой глаза и так далее).

Каждый нейрон имеет тело клетки и отросток. Путь нервного импульса по телу начинается именно с последнего. Отростки бывают двух типов:

  1. Дендриты. На них возложена функция восприятия раздражения расположенных на них рецепторов.
  2. Аксоны. Благодаря им нервные импульсы передаются от клеток к рабочему органу.

Интересный аспект деятельности

Говоря про проведение нервного импульса клетками, сложно не рассказать об одном интересном моменте.

Так, когда они находятся в покое, то, скажем так, натриево-калиевый насос занимается перемещением ионов таким образом, чтобы достичь эффекта пресной воды внутри и соленой внешне.

[attention type=green]

Благодаря получаемому дисбалансу разницы потенциалов на мембране можно наблюдать до 70 милливольт. Для сравнения – это 5% от обычных батареек АА. Но как только меняется состояние клетки, то получившееся равновесие нарушается, и ионы начинают меняться местами.

[/attention]

Так происходит, когда через неё проходит путь нервного импульса. Благодаря активному действию ионов это действие и называют ещё потенциалом действия. Когда он достигает определённого показателя, то начинаются обратные процессы, и клетка достигает состояния покоя.

О потенциале действия

Говоря про преобразование нервного импульса и его распространение, следует отметить, что оно могло бы составлять жалкие миллиметры в секунду. Тогда бы сигналы от руки до мозга доходили бы за минуты, что явно нехорошо. Вот тут и играет свою роль в усилении потенциала действия рассмотренная ранее оболочка из миелина.

А все её «пропуски» размещены таким образом, чтобы они только позитивно сказывались на скорости передачи сигналов. Так, когда импульсом достигается конец основной части одного тела аксона, то он передаётся либо следующей клетке, либо (если говорить о мозге) многочисленным ответвлениям нейронов.

Вот в последних случаях работает немного другой принцип.

Как всё работает в мозгу?

Давайте поговорим, какая передаточная последовательность нервного импульса работает в наиболее важных частях нашей ЦНС. Здесь нейроны от своих соседей отделяются небольшими щелями, что называются синапсами.

Потенциал действия не может переходить через них, поэтому он ищет иной способ, чтобы попасть к следующей нервной клетке. На конце каждого отростка есть небольшие мешочки, что называются пресинаптическими пузырьками. В каждом из них имеются особые соединения – нейромедиаторы.

Когда к ним поступает потенциал действия, то высвобождаются из мешочков молекулы. Они пересекают синапс и присоединяются к особенным молекулярным рецепторам, что расположены на мембране. При этом нарушается равновесия и, вероятно, появляется новый потенциал действия.

Достоверно это ещё не известно, нейрофизиологи занимаются изучениями вопроса и по сей день.

Работа нейромедиаторов

Когда они передают нервные импульсы, то существует несколько вариантов, что произойдёт с ними:

  1. Они будут диффундированы.
  2. Подвергнутся химическому расщеплению.
  3. Вернутся назад в свои пузырьки (это называется обратным захватом).

В конце 20-го века сделали поразительное открытие.

Ученые узнали, что лекарства, что влияют на нейромедиаторы (а также их выброс и обратный захват), могут изменять психическое состояние человека коренным образом.

Так, к примеру, ряд антидепрессантов вроде “Прозака” блокируют обратный захват серотонина. Есть определённые причины считать, что в болезни Паркинсона виноват дефицит в головном мозге нейромедиатора дофамина.

Сейчас исследователи, которые изучают пограничные состояния человеческой психики, пробуют разобраться, как же это всё влияет на рассудок человека.

Ну а пока же у нас нет ответа на такой фундаментальный вопрос: что же заставляет нейрон создавать потенциал действия? Пока механизм «запуска» этой клетки для нас является секретом.

Особенно интересным с точки зрения данной загадки является работа нейронов главного мозга.

[attention type=yellow]

Если кратко, то они могут работать с тысячами нейромедиаторов, которые посылаются их соседями. Детали относительно обработки и интеграции данного типа импульсов нам почти не известны. Хотя над этим работает много исследовательских групп.

[/attention]

На данный момент получилось узнать, что все полученные импульсы интегрируются, а нейрон выносит решение – необходимо ли поддерживать потенциал действия и передавать их дальше. На этом фундаментальном процессе базируется функционирование головного мозга человека.

Ну что ж, тогда это неудивительно, что мы не знаем ответа на эту загадку.

В статье «нервный импульс» и «потенциал действия» использовались в качестве синонимов. Теоретически это верно, хотя в некоторых случаях необходимо учитывать некоторые особенности. Так, если вдаваться в детали, то потенциал действия является только частью нервного импульса.

При детализированном рассмотрении ученых книг можно узнать, что так называют только изменение заряда мембраны с положительного на отрицательный, и наоборот. Тогда как под нервным импульсом понимают сложный структурно-электрохимический процесс. Он распространяется по мембране нейрона как бегущая волна изменений.

Потенциал действия – всего лишь электрический компонент в составе нервного импульса. Он характеризирует изменения, что происходят с зарядом локального участка мембраны.

Где же создаются нервные импульсы?

Откуда они начинают свой путь? Ответ на этот вопрос может дать любой студент, который прилежно изучал физиологию возбуждения. Есть четыре варианта:

  1. Рецепторное окончание дендрита. Если оно есть (что не факт), то возможным является наличие адекватного раздражителя, что создаст сначала генераторный потенциал, а потом уже и нервный импульс. Подобным образом работают болевые рецепторы.
  2. Мембрана возбуждающего синапса. Как правило, такое возможно только при наличии сильного раздражения или их суммирования.
  3. Триггерная зона дентрида. В этом случае локальные возбуждающие постсинаптические потенциалы формируются как ответ на раздражитель. Если первый перехват Ранвье миелинизирован, то они на нём суммируются. Благодаря наличию там участка мембраны, которая обладает повышенной чувствительностью, здесь возникает нервный импульс.
  4. Аксонный холмик. Так называют место, где начинается аксон. Холмик – это наиболее частый создать импульсов на нейроне. Во всех остальных местах, которые рассматривались ранее, их возникновение гораздо менее вероятное. Это происходит из-за того, что здесь мембрана имеет повышенную чувствительность, а также пониженный критический уровень деполяризации. Поэтому, когда начинается суммирование многочисленных возбуждающих постсинаптических потенциалов, то раньше всего на них реагирует холмик.

Пример распространяющегося возбуждения

Рассказ медицинскими терминами может вызвать непонимание отдельных моментов. Чтобы устранить это, стоит кратко пройтись по изложенным знаниям. В качестве примера возьмем пожар.

Вспомните сводки из новостей прошлого лета (также это скоро можно будет услышать опять). Пожар распространяется! При этом деревья и кустарники, которые горят, остаются на своих местах. А вот фронт огня идёт всё дальше от места, где был очаг возгорания. Аналогичным образом работает нервная система.

Часто бывает необходимо успокоить начавшееся возбуждение нервной системы. Но это не так легко сделать, как и в случае с огнем. Для этого совершают искусственное вмешательство в работу нейрона (в лечебных целях) или используют различные физиологические средства. Это можно сравнить с заливанием пожара водой.

Источник: https://FB.ru/article/250603/nervnyiy-impuls-ego-preobrazovanie-i-mehanizm-peredachi

Нервный импульс, его скорость, препараты улучшающие проведение

Химическая передача нервного импульса

Потенциал действия или нервный импульс, специфическая реакция, протекающая в виде возбуждающей волны и протекающей по всему нервному пути. Эта реакция является ответом на раздражитель.

Главной задачей является передача данных от рецептора к нервной системе, а после этого она направляет эту информацию к нужным мышцам, железам и тканям. После прохождения импульса, поверхностная часть мембраны становится отрицательно заряженной, а внутренняя ее часть остается положительной.

Таким образом, нервным импульсом называют последовательно передающиеся электрические изменения.

Возбуждающее действие и его распространение подвергается физико-химической природе. Энергия для проведения этого процесса образуется непосредственно в самом нерве. Происходит это из-за того, что прохождение импульса влечет образование тепла.

Как только он прошел, начинается затихание или референтное состояние. В которою всего лишь долю секунды нерв не может проводить стимул. Скорость, с которой может поступать импульс колеблется в пределах от 3 м/с до 120 м/с.

Оглавление

  • 1 Строение
  • 2 Законы проведения
  • 3 Химия проведения импульса

Строение

Волокна, по которым проходит возбуждение, имеют специфическую оболочку. Грубо говоря, эта система напоминает электрический кабель. По своему составу оболочка может быть миелиновая и безмиелиновая. Самый главной составляющей миелиновой оболочки является – миелин, который играет роль диэлектрика.

Скорость прохождения импульса зависит от нескольких факторов, например, от толщины волокон, при чем оно толще, тем скорость развивается быстрее.

Еще один фактором в повышении скорости проведения, является сам миелин. Но при этом он располагается не по всей поверхности, а участками, как бы нанизывается.

Соответственно между этими участками есть те, которые остаются «голыми». По ним происходит утечка тока из аксона.

[attention type=red]

Аксоном называется отросток, с помощью него обеспечивается передача данных от одной клетки к остальным. Регулируется этот процесс с помощью синапса – непосредственной связи между нейронами или нейроном и клеткой. Еще существует, так называемое синаптическое пространство или щель.

[/attention]

Когда поступает раздражительный импульс к нейрону, то в процессе реакции высвобождаются нейромедиаторы (молекулы химического состава). Они проходят через синаптическое отверстие, в итоге попадая на рецепторы нейрона или клетки, которой нужно донести данные.

Для проведения нервного импульса необходимы ионы кальция, так как без этого не происходит высвобождение нейромедиатора.

Вегетативная система обеспечивается в основном безмиелиновыми тканями. По ним возбуждение распространяется постоянно и беспрерывно.

Принцип передачи основан на возникновении электрического поля, поэтому возникает потенциал, раздражающий мембрану соседнего участка и так по всему волокну.

При этом потенциал действия не передвигается, а появляется и исчезает в одном месте. Скорость передачи по таким волокнам составляет 1-2 м/с.

Законы проведения

В медицине присутствуют четыре основных закона:

  • Анатомо-физиологическая ценность. Проводится возбуждение только в том случае, если нет нарушения в целостности самого волокна. Если не обеспечивать единство, например, по причине ущемления, принятия наркотиков, то и проведение нервного импульса невозможно.
  • Изолированное проведение раздражения. Возбуждение может передаваться вдоль нервного волокна, никаким образом, не распространяясь на соседние.
  • Двустороннее проведение. Путь проведения импульса может быть только двух видов – центробежно и центростремительно. Но в действительности направление происходит в одном из вариантов.
  • Бездекрементное проведение. Импульсы не утихают, иными словами, проводятся без декремента.

Химия проведения импульса

Процесс раздражения так же контролируется ионами, в основном калием, натрием и некоторыми органическими соединениями.

Концентрация расположения этих веществ разная, клетка заряжена внутри себя отрицательно, а на поверхности положительно. Этот процесс будет называться разностью потенциалов.

При колебании отрицательного заряда, например, его уменьшении провоцируется разность потенциалов и этот процесс называется деполяризацией.

[attention type=green]

Раздражение нейрона влечет за собой открытие каналов натрия в месте раздражения. Это может способствовать вхождению положительно заряженных частиц во внутрь клетки. Соответственно отрицательный заряд снижается и происходит потенциал действия или происходит нервный импульс. После этого натриевые каналы снова прикрываются.

[/attention]

Часто встречается, что именно ослабление поляризации способствует открытию калиевых каналов, что провоцирует высвобождению положительно заряженных ионов калия. Этим действием уменьшается отрицательный заряд на поверхности клетки.

Потенциал покоя или электрохимическое состояние восстанавливается тогда, когда в работу включаются калий-натриевые насосы, с помощью которых ионы натрия выходят из клетки, а калия заходят в нее.

В результате можно сказать – при возобновлении электрохимических процессов и происходят импульсы, стремящиеся по волокнам.

Источник: http://NashiNervy.ru/o-nervnoj-sisteme/nervnyj-impuls-i-printsip-ego-peredachi.html

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: