Химический состав плазматической мембраны

Плазматическая мембрана: основные свойства, строение и функции плазмолеммы

Химический состав плазматической мембраны

> Наука > Биология > Основное свойство плазматической мембраны

Строение клеток живых организмов во многом зависит от того, какие функции они выполняют. Однако существует ряд общих для всех клеток принципов архитектуры. В частности, любая клетка имеет снаружи оболочку, которая называется цитоплазматической или плазматической мембраной. Существует и еще одно название — плазмолемма.

  • Строение
  • Функции
  • Избирательная проницаемость
  • Транспорт веществ
  • Пассивный
  • Активный
  • В мембранной упаковке
  • Экзоцитоз

Строение

Плазматическая мембрана состоит из молекул трех основных видов — протеинов, углеводов и липидов. У разных типов клеток соотношение этих компонентов может различаться.

В 1972 году учеными Николсоном и Сингером был предложена жидкостно-мозаичная модель строения цитоплазматической мембраны. Эта модель послужила ответом на вопрос о строении клеточной мембраны и не утратила своей актуальности и по сей день. Суть жидкостно-мозаичной модели заключается в следующем:

  1. Липиды располагаются в два слоя, составляя основу клеточной стенки;
  2. Гидрофильные концы липидных молекул расположены внутрь, а гидрофобные — наружу;
  3. Внутри эта структура имеет слой протеинов, которые пронизывают липиды подобно мозаике;
  4. Кроме белков здесь имеется небольшое количество углеводов — гексоз;

Эта биологическая система отличается большой подвижностью. Белковые молекулы могут выстраиваться, ориентируясь к одной из сторон липидного слоя, или же свободно перемещаются и меняют свое положение.

: сколько хромосом у нормального человека?

Функции

Несмотря на некоторые различия в строении, плазмолеммы всех клеток обладают набором общих функций. Кроме того, они могут обладать характеристиками, сугубо специфичными для данного вида клеток. Рассмотрим кратко общие основные функции всех клеточных мембран:

  1. Барьерная функция обеспечивает клетке обмен веществ с окружающим пространством. Этот обмен является регулируемым, избирательным и может быть как пассивным, так и активным.
  2. Транспортная функция заключается в том, что мембрана осуществляет транспорт веществ как в клетку, так и из нее. Таким образом в клетку поставляются питательные вещества, а наружу выводятся продукты метаболизма. Благодаря транспортной функции происходит поддержание в клетке определенного уровня рН, создается ионный градиент и производится секреция различных веществ, необходимых для жизнедеятельности организма.
  3. Матричная функция обеспечивает белкам определенную локализацию и ориентацию, благодаря чему осуществляется их оптимальное взаимодействие.
  4. Механическая функция обеспечивает клеткам автономность внутриклеточных образований и одновременно контакт с другими клетками. Немаловажная роль в этом взаимодействии отводится межклеточному веществу.
  5. Энергетическая функция заключается в переносе белками мембраны энергии в процессе фотосинтеза и клеточном митохондриальном дыхании.
  6. Рецепторная функция осуществляется за счет некоторых белков-рецепторов. Эти сложные молекулы помогают летке воспринимать те или иные сигналы. В качестве примера можно привести гормоны или нейромедиаторы, которые воздействуют на определенные белки-рецепторы клеток-мишеней.
  7. Ферментативная функция обеспечивается также за счет белков цитоплазматической мембраны. Часть этих белков могут служить ферментами. К примеру, плазмалеммы кишечного эпителия содержат пищеварительные ферменты.
  8. Насосная функция плазмолеммы заключается в выработке и проведении потенциалов. Благодаря мембране в клетке поддерживается постоянная концентрация ионов калия и натрия. Это позволяет поддерживать разность потенциалов и проведение нервного импульса.
  9. Маркерная функция осуществляется благодаря белкам-антигенам, которые позволяют распознавать «свои» и «чужие» клетки. Эти маркеры состоят из белков с присоединенными к ним олигосахаридными цепями. С помощью этих маркеров клетки могут распознавать друг друга в процессе построения тканей, а также при работе иммунной системы организма.

Избирательная проницаемость

Основным свойством плазматической мембраны является избирательная проницаемость. Через нее проходят ионы, аминокислоты, глицерол и жирные кислоты, глюкоза. При этом клеточная мембрана пропускает одни вещества и задерживает другие.

Существует несколько видов механизмов транспорта веществ через клеточную мембрану:

  1. Диффузия;
  2. Осмос;
  3. Экзоцитоз;
  4. Эндоцитоз;
  5. Активный транспорт;

Диффузия и осмос не требуют энергетических затрат и осуществляются пассивно, остальные виды транспорта — это активные процессы, протекающие с потреблением энергии.

Такое свойство клеточной оболочки во время пассивного транспорта обусловлено наличием специальных интегральных белков. Такие белки-каналы пронизывают плазмолемму и образуют в ней проходы. Ионы кальция, калия и лора передвигаются по таким каналам относительно градиента концентрации.

Транспорт веществ

К основным свойствам плазматической мембраны относят также ее способность транспортировать молекулы разнообразных веществ.

Описаны следующие механизмы переноса веществ через плазмолемму:

  1. Пассивный — диффузия и осмос;
  2. Активный;
  3. Транспорт в мембранной упаковке;

Рассмотрим эти механизмы более подробно.

Пассивный

К пассивным видам транспорта относятся осмос и диффузия. Диффузией называется движение частиц по градиенту концентрации. В этом случае клеточная оболочка выполняет функции осмотического барьера.

Скорость диффузии зависит от величины молекул и их растворимости в липидах.

Диффузия, в свою очередь, может быть нейтральной (с переносом незаряженных частиц) или облегченной, когда задействуются специальные транспортные белки.

Осмосом называется диффузия через клеточную стенку молекул воды.

Полярные молекулы с большой массой транспортируются с помощью специальных белков — этот процесс получил название облегченной диффузии. Транспортные белки пронизывают клеточную мембрану насквозь и образуют каналы. Все транспортные белки подразделяются на каналообразующие и транспортеры. Проникновение заряженных частиц облегчается благодаря существованию мембранного потенциала.

Активный

Перенос веществ через клеточную оболочку против электрохимического градиента называется активным транспортом. Такой транспорт всегда происходит с участием специальных белков и требует энергии.

Транспортные белки имеют специальные участки, которые связываются с переносимым веществом. Чем больше таких участков, тем быстрее и интенсивнее происходит перенос.

В процессе переноса белок транспортер претерпевает обратимые структурные изменения, что и позволяет ему выполнять свои функции.

В мембранной упаковке

Молекулы органически веществ с большой массой переносятся через мембрану с образованием замкнутых пузырьков — везикул, которые образует мембрана.

Отличительной чертой везикулярного транспорта является то, что переносимые макрочастицы не смешиваются с другим молекулами клетки или ее органеллами.

[attention type=yellow]

Перенос крупных молекул внутрь клетки получил название эндоцитоза. В свою очередь, эндоцитоз подразделяется на два вида — пиноцитоз и фагоцитоз. При этом часть плазматической мембраны клетки образует вокруг переносимых частиц пузырек, называемый вакуолью. Размеры вакуолей при пиноцитозе и фагоцитозе имеют существенные различия.

[/attention]

В процессе пиноцитоза происходит поглощение клеткой жидкостей. Фагоцитоз обеспечивает поглощение крупных частиц, обломков клеточных органелл и даже микроорганизмов.

Экзоцитоз

Экзоцитозом принято называть выведение из клетки веществ. В таком случае вакуоли перемещаются к плазмолемме. Далее стенка вакуоли и плазмолемма начинают слипаться, а затем сливаться. Вещества, которые содержатся в вакуоли, перемещаются в окружающую среду.

Клетки некоторых простейших организмов имеют строго определенные участки для обеспечения такого процесса.

Как эндоцитоз, так и экзоцитоз протекают в клетке при участии фибриллярных компонентов цитоплазмы, которые имеют тесную непосредственную связь с плазмолеммой.

Отзывы и комментарии

Источник: https://obrazovanie.guru/nauka/biologiya/osnovnoe-svojstvo-plazmaticheskoj-membrany.html

Плазматическая мембрана – химический состав, строение и свойства – Помощник для школьников Спринт-Олимпик.ру

Химический состав плазматической мембраны

Большинство живых организмов на планете состоит из клеток. Каждая клетка имеет несколько частей, включений, стенок. Однако наиболее важное значение имеет плазматическая мембрана. Ее также называют клеточной или цитоплазматической, цитолеммой или плазмалеммой. Для того чтобы понять ее необходимость, стоит изучить химический состав и основные функции.

История изучения

Впервые строение и функции плазматической мембраны начали изучать в 1925 году. Тогда специалисты смогли впервые выделить оболочки эритроцитов. Они назвали их «тени», вычислили общую площадь.

После этого ученые с помощью ацетона выделили все жиры (липиды). Это было необходимо для определения их количества на каждую единицу площади эритроцитов.

Вывод, сделанный после исследований и экспериментов, был правильным, но ученые допустили несколько грубейших ошибок:

  • ацетон не помогает выделить абсолютно все жиры из цитоплазматической мембраны;
  • площадь цитолеммы была определена неправильно, поскольку мембраны были сухими.

Несмотря на эти нарушения, случайным образом результат оказался верным, что позволило открыть двойной слой или бислой. Далее исследования специалистов продолжились. Они обратили внимание на натяжение выделенных пленок.

Мембраны не могли быть такими жесткими, поэтому появилась теория, что они содержат белки, позволяющие сохранять упругость и эластичность.

В 1935 году американские ученые пришли к выводу, что схема строения плазматической мембраны напоминает сандвич, то есть имеется липидный бислой, с двух сторон окруженный белковыми прослойками.

В 1950-х годах теория была подтверждена во время первых микроскопических исследований. В 1960 году Дж. Робертсон сформулировал теорию строения биологической мембраны, которая утверждала, что все оболочки в клетках состоят из трех слоев. Однако теория сандвича или бутерброда была опровергнута, поскольку появились другие факты.

Первым из них стали сведения о глобулярности мембраны. Помимо этого, специалисты определили, что во время микроскопического исследования структура пленки во многом зависит от способа ее фиксации. Следующим открытием, опровергающим теорию сандвича, было изучение сперматозоида, во время которого появилось подтверждение, что даже в одной клетке структура мембраны на разных участках отличается.

Последним опровержением стало выявление белков непосредственно внутри мембраны, тогда как теория бутерброда предполагала их нахождение за ее пределами. Подобные выводы в 1972 году использовал Сингер и Николсон, создавая мозаичную модель строения цитолеммы. На ней было отчетливо видно, что внутри пленки имеется большое количество белков, но молекулы встречаются и за пределами бислоя.

Химический состав

Плазмалемма или клеточная мембрана представляет собой молекулярную эластическую структуру, состоящую из большого количества липидов, а также белков.

Она позволяет отделить клетку от других жидкостей в организме, предотвратить ее повреждение, принимает участие в метаболических процессах.

Помимо этого, цитолемма помогает разделить камеры клетки для обеспечения ее нормального функционирования.

Химический состав плазматический мембраны в основном представлен фосфолипидами, но присутствуют и другие молекулы. Этот вид липидов относится к сложным, поэтому специалисты долгое время не могли точно определить состав цитолеммы. Каждый фосфолипид имеет гидрофильную часть и гидрофобную. Первая представляет собой голову молекулы и обращена наружу, вторая — хвост и обращена внутрь.

У большинства живых организмов на планете химический состав мембраны очень похож, как и ее структура. Однако существуют исключения. У некоторых организмов она образована глицерином и другими спиртами. Белки внутри биологической оболочки могут быть разными. Наиболее часто встречаются следующие:

  • Интегральные протеины пронизывают пленку насквозь, поэтому могут быть внутри и снаружи клетки. Их количество в составе наибольшее.
  • Полуинтегральные белки могут быть погружены одной частью во внешний или внутренний слой, выполняют функцию соединения мембраны с цитоскелетом.
  • Поверхностные располагаются на пленке или ее внутреннем слое, не погружаются в него.
  • Наиболее важными считаются интегральные, ведь они могут выполнять роль транспортных включений и рецепторов. Иногда такие протеины выступают в роли ионных каналов, поддерживают постоянство внешней и внутренней среды.

    В первые годы изучения цитолеммы специалисты не разделяли протеины на разные группы, считая их одинаково необходимыми и выполняющими одни и те же функции. Однако сегодня, благодаря развитию технологий и появлению современных микроскопов, можно с уверенностью сказать, что строение мембраны довольно сложное, даже у простых растительных клеток.

    Основные функции

    Основным свойством плазматической мембраны является элементарное поддержание постоянства внутренней среды клетки и обеспечение ее бесперебойного функционирования. Помимо этого, она выполняет и другие функции:

  • Барьерная. Обеспечивает активные обменные процессы и безопасное контактирование с внешней средой. Некоторые оболочки защищают клетку от опасных компонентов, которые могут ее повредить или уничтожить. Дополнительно барьер обеспечивает избирательную проницаемость, то есть попадание за пленку каких-либо атомов будет зависеть от их размера и толщины цитолеммы. Благодаря этому, возможно сохранение целостности наружной ткани, поверхности самой пленки.
  • Транспортная. Имеет важное значение, ведь благодаря ей осуществляется транспорт разных веществ в клетку и выделяются продукты распада из нее. Помимо этого, способность переносить конкретные компоненты осуществляет поддержание оптимального кислотно-щелочного равновесия, а также ионного состава. Последнее важно для обработки некоторых ферментов. Транспорт может быть пассивным и активным. Первый не требует затрат энергии, происходит медленно, второй сопровождается значительными энергетическими потерями, но протекает быстро.
  • Энергетическая. Также играет важную роль. Структурные особенности клетки не имеют значения, поскольку в каждой плазмалемме имеются белки, отвечающие за перенос энергии и входящие в состав специальных систем для обеспечения этого процесса. При снижении их концентрации происходит нарушение метаболизма, провоцирующее другие отрицательные изменения.
  • Рецепторная. Во многом зависит от количества интегральных белков в оболочке. Если их недостаточно, клетка не в состоянии воспринимать сигналы, теряется способность узнавания того или иного импульса, а также главная особенность — реакция, возникающая в ответ на изменения на поверхности мембраны.
  • В отличие от других способностей оболочки, рецепторная играет определяющую роль.

    Многие гормоны, циркулирующие в крови человека, животного и других организмов, способны воздействовать только на те частицы, в которых имеются специальные белки, выполняющие рецепторную функцию.

    Если в плазмолемме их нет, все процессы нарушаются. Дополнительно такие протеины могут участвовать в проведении нервного импульса, связываясь с нейромедиаторами.

    Другие возможности

    Помимо основных функций цитоплазматической мембраны, имеются дополнительные, которые изучены не так подробно, но играют важную роль. Матричная обеспечивает взаимодействие всех протеинов для более эффективного метаболизма в клетке и оболочке. Это позволяет построить новую пленку в случае ее повреждения.

    Механическая функция также важна. Она позволяет обеспечить автономность клетки и всех ее структур разного типа, поддержать связь между разными единицами тканей и предотвратить их разрыв. Клеточные стенки играют определяющую роль в обеспечении механической защиты. У животных эту работу выполняет межклеточное вещество.

    Ферментативная функция осуществляется не в каждой цитолемме, поскольку некоторые клетки лишены специальных веществ. Однако в эпителиальных единицах тонкого кишечника человека и других млекопитающих содержится довольно большое количество пищеварительных ферментов, принимающих непосредственное участие в процессе переработки пищи.

    Генерация и проведение потенциалов играет важную роль. Благодаря наличию цитолеммы, в клетке постоянно поддерживается определенное количество ионов калия и натрия.

    [attention type=red]

    Первых в клетке гораздо больше, чем снаружи, вторых больше за пределами единицы и меньше внутри.

    [/attention]

    Если изучить характеристику этих ионов в сравнительной таблице, можно увидеть, что они выполняют важнейшие функции, а при изменении концентрации наблюдается расстройство метаболических процессов.

    Маркировка клетки также осуществляется с участием цитоплазматической мембраны. На каждой из них во время микроскопического исследования можно увидеть антигены, выполняющие роль ярлыков или антенн.

    Благодаря этому, клетки с одинаковой маркировкой могут узнавать друг друга и действовать сообща при возникновении такой необходимости.

    Именно антенны позволяют клеткам иммунной системы распознавать чужеродные антигены и действовать против них для обеспечения защиты организма.

    Благодаря дополнительным возможностям плазмоллемы, возможно существование всех клеток внутри одного организма и их постоянное взаимодействие.

    Структура цитолеммы

    Почти все клеточные оболочки состоят из жиров нескольких классов. Чаще всего встречается холестерол, глико- и фосфолипиды. Последние состоят не только из липидов, но также имеют углеводное включение в виде «хвоста». Холестерол выполняет роль твердого жира, поскольку придает мембране жесткость, а также заполняет пространство между другими липидами.

    Существуют более жесткие оболочки и эластичные, мягкие, в которых количество холестерола снижено. Помимо этого, вещество служит барьером, препятствуя переходу из клетки в клетку полярных молекул. Состав и ориентация протеинов в каждой мембране отличается, но специалисты определили, что без них пленка существовать не может.

    [attention type=green]

    В структуру плазмалеммы также входят аннулярные жиры, располагающиеся в непосредственной близости от протеинов и выделяющиеся вместе с ними из клетки. Без этих липидов протеины оболочки не могут выполнять свои функции. В большинстве случаев плазматическая мембрана асимметрична, то есть в разных ее частях количество липидов и протеинов отличается.

    [/attention]

    Каждая оболочка имеет органеллы. Они представляют собой участки цитоплазмы, связанные между собой. Наиболее часто встречаются следующие органеллы:

    • комплекс Гольджи;
    • вакуоли;
    • эндоплазматическая сеть;
    • лизосомы.

    Разные клетки обладают индивидуальным составом органелл, но некоторые из них присутствуют в подавляющем большинстве единиц ткани. Благодаря своей структуре, мембраны способны к избирательной проницаемости.

    Некоторые вещества проходят через них свободно, другие — нет. Процесс регулируется самой оболочкой. Он может быть пассивным и активным.

    В первом случае в реакцию вступают интегральные белки, во втором требуются значительные энергетические затраты.

    Значение клеточной оболочки

    Если внимательно изучить строение и функции плазматической оболочки, можно понять ее роль и значение в нормальном функционировании всего организма. После получения точных сведений о работе мембраны ученые смогли подтвердить ее необходимость и первостепенную роль в организме.

    Все органы животных и человека состоят из клеток, поэтому палазмалемма имеет наиболее важное значение для всего организма. При ее повреждении клетка неспособна нормально существовать, нарушается целая цепь процессов. Именно поэтому специалисты и сегодня изучают цитоплазматическую мембрану, ее функции и процессы, в которых она принимает участие.

    ПредыдущаяСледующая

    Источник: https://Sprint-Olympic.ru/uroki/biologija/82360-plazmaticheskaia-membrana-himicheskii-sostav-stroenie-i-svoistva.html

    Плазматическая мембрана – химический состав, строение и свойства

    Химический состав плазматической мембраны

    Время на чтение: 13 минут

    Характеристики, функции и структура плазматической мембраны / биология

    Химический состав плазматической мембраны

    плазматическая мембрана, клеточная мембрана, плазмалемма или цитоплазматическая мембрана, представляет собой структуру липидной природы, которая окружает и разграничивает клетки, являясь неотъемлемым компонентом его архитектуры. Биомембраны обладают свойством окружать определенную структуру своей внешней частью. Его основная функция – служить барьером..

    Кроме того, он контролирует транзит частиц, которые могут входить и выходить. Мембранные белки действуют как «молекулярные двери» с довольно требовательными привратниками. Состав мембраны также играет роль в распознавании клеток..

    Структурно они представляют собой двухслойные слои, образованные природными фосфолипидами, белками и углеводами. Аналогично, фосфолипид представляет собой фосфор с головой и хвостом. Хвост состоит из углеродных цепей, нерастворимых в воде, они сгруппированы внутрь.

    Напротив, головы являются полярными и дают водянистую клеточную среду. Мембраны являются чрезвычайно стабильными структурами. Силы, которые их поддерживают, – это силы Ван-дер-Ваальса, среди фосфолипидов, которые их составляют; это позволяет им плотно окружать край клеток.

    Тем не менее, они также довольно динамичны и плавны. Свойства мембран варьируются в зависимости от анализируемого типа клеток. Например, эритроциты должны быть эластичными для перемещения через кровеносные сосуды. 

    Напротив, в нейронах мембрана (миелиновая оболочка) имеет необходимую структуру для эффективного проведения нервного импульса.

    индекс

    • 1 Общая характеристика
      • 1.1 Текучесть мембраны
      • 1.2 Кривизна
      • 1.3 Распределение липидов
    • 2 функции
    • 3 Структура и состав
      • 3.1 Модель жидкостной мозаики
      • 3.2 Типы липидов
      • 3.3 Липидные плоты
      • 3.4 Мембранные белки
    • 4 Ссылки

    Общие характеристики

    Мембраны представляют собой довольно динамичные структуры, которые широко варьируются в зависимости от типа клеток и состава их липидов. Мембраны модифицируются в соответствии с этими характеристиками следующим образом:

    Текучесть мембраны

    Мембрана не является статичной сущностью, она ведет себя как жидкость. Степень текучести структуры зависит от нескольких факторов, включая липидный состав и температуру, при которой мембраны подвергаются воздействию..

    Когда все связи, которые существуют в углеродных цепях, насыщены, мембрана имеет тенденцию вести себя как гель, и ван-дер-ваальсовы взаимодействия стабильны. Наоборот, когда есть двойные связи, взаимодействия меньше, и текучесть увеличивается

    Кроме того, существует влияние длины углеродной цепи. Чем дольше, тем больше взаимодействий с соседями, что увеличивает беглость. Когда температура увеличивается, текучесть мембраны также увеличивается.

    Холестерин играет незаменимую роль в регуляции текучести и зависит от концентрации холестерина. Когда хвосты длинные, холестерин действует как иммобилайзер, снижая текучесть. Это явление происходит при нормальном уровне холестерина.

    Эффект изменяется, когда концентрации холестерина ниже. При взаимодействии с хвостами липидов, эффект, который вызывает их разделение, снижает текучесть.

    кривизна

    Как и текучесть, кривизна мембраны определяется липидами, которые составляют каждую мембрану в частности.

    Кривизна зависит от размера головки липида и хвоста. Те, у кого длинные хвосты и большие головы, плоские; те с относительно меньшими головами имеют тенденцию изгибаться намного больше, чем предыдущая группа.

    Это свойство важно при явлениях мембранной эвагинации, образования пузырьков, микроворсинок и др..

    Распределение липидов

    Два «листа», которые образуют каждую мембрану – мы помним, что это бислой – не имеют одинакового состава липидов внутри нее; поэтому говорят, что распределение асимметрично. Этот факт имеет важные функциональные последствия.

    Конкретным примером является состав плазматической мембраны эритроцитов. В этих клетках крови сфингомиелин и фосфатидилхолин (которые образуют мембраны с большей относительной текучестью) обнаруживаются при обращении к внешней стороне клетки.

    Липиды, которые имеют тенденцию образовывать более жидкие структуры, сталкиваются с цитозолем. За этим паттерном не следует холестерин, который более или менее однородно распределен в обоих слоях..

    функции

    Функция мембраны каждого типа клеток тесно связана с ее структурой. Тем не менее, они выполняют основные функции.

    Биомембраны отвечают за разграничение клеточной среды. Точно так же внутри клетки есть мембранные отсеки.

    Например, митохондрии и хлоропласты окружены мембранами, и эти структуры участвуют в биохимических реакциях, которые происходят в этих органеллах..

    [attention type=yellow]

    Мембраны регулируют прохождение материалов в клетку. Благодаря этому барьеру необходимые материалы могут поступать как пассивно, так и активно (при необходимости АТФ). Также нежелательные или токсичные материалы не попадают.

    [/attention]

    Мембраны поддерживают ионный состав клетки на соответствующих уровнях посредством процессов осмоса и диффузии. Вода может свободно перемещаться в зависимости от градиента концентрации. Соли и метаболиты имеют специфические транспортеры, а также регулируют клеточный pH.

    Благодаря присутствию белков и каналов на поверхности мембраны, соседние клетки могут взаимодействовать и обмениваться материалами. Таким образом, клетки собираются вместе и ткани формируются.

    Наконец, мембраны содержат значительное количество сигнальных белков и позволяют взаимодействовать с гормонами, нейротрансмиттерами и другими..

    Структура и состав

    Основным компонентом мембран являются фосфолипиды. Эти молекулы амфипатические, имеют полярную и аполярную зоны. Полярность позволяет им взаимодействовать с водой, в то время как хвост представляет собой гидрофобную углеродную цепь.

    Ассоциация этих молекул происходит спонтанно в бислое, причем гидрофобные хвосты взаимодействуют друг с другом, а головки направлены наружу..

    В клетке маленького животного мы находим невероятно большое количество липидов, порядка 109 молекулы. Мембраны имеют толщину около 7 нм. Гидрофобное внутреннее ядро, почти во всех мембранах, занимает толщину от 3 до 4 нм..

    Жидкая мозаичная модель

    Модель, которая в настоящее время обрабатывается биомембранами, известна как «жидкая мозаика», сформулированная в 70-х годах исследователями Сингером и Николсоном. Модель предполагает, что мембраны состоят не только из липидов, но также из углеводов и белков. Термин мозаика относится к указанной смеси.

    Лицо мембраны, которая обращена к внешней стороне клетки, называется экзоплазматическим лицом. Напротив, внутренняя сторона цитозольная.

    Эта же номенклатура применяется к биомембранам, составляющим органеллы, за исключением того, что экзоплазматическая поверхность в этом случае указывает на внутреннюю часть клетки, а не на внешнюю..

    Липиды, которые составляют мембраны, не являются статичными. Они имеют возможность перемещаться с определенной степенью свободы в определенных регионах через структуру.

    Мембраны состоят из трех основных типов липидов: фосфоглицериды, сфинголипиды и стероиды; все они амфипатические молекулы. Далее мы подробно опишем каждую группу:

    Типы липидов

    Первая группа, состоящая из фосфоглицеридов, происходит из глицерол-3-фосфата. Хвост, имеющий гидрофобный характер, состоит из двух цепей жирных кислот. Длина цепей различна: они могут содержать от 16 до 18 атомов углерода. Они могут иметь одинарные или двойные связи между атомами углерода.

    Подклассификация этой группы дается типом головы, которую они представляют. Фосфатидилхолины являются наиболее распространенными, а голова содержит холин. В других типах различные молекулы, такие как этаноламин или серин, взаимодействуют с фосфатной группой..

    Другой группой фосфоглицеридов являются плазмалогены. Липидная цепь связана с глицерином сложноэфирной связью; в свою очередь, существует углеродная цепь, связанная с глицерином посредством эфирной связи. Их довольно много в сердце и мозге.

    [attention type=red]

    Сфинголипиды происходят из сфингозина. Сфингомиелин является обильным сфинголипидом. Гликолипиды состоят из головок, образованных из сахаров.

    [/attention]

    Третий и последний класс липидов, которые составляют мембраны, являются стероидами. Это кольца из углерода, объединенные в группы по четыре. Холестерин – стероид, присутствующий в мембранах и особенно распространенный у млекопитающих и бактерий..

    Липидные плоты

    Существуют специфические зоны мембран эукариотических организмов, где сосредоточены холестерин и сфинголипиды. Эти домены также известны как рафт липид.

    В этих регионах они также несут различные белки, функции которых являются клеточной передачи сигналов. Считается, что липидные компоненты модулируют белковые компоненты в рафтах.

    Мембранные белки

    Внутри плазматической мембраны закреплены ряд белков. Они могут быть цельными, закрепленными на липидах или расположенными на периферии..

    Интегралы проходят через мембрану. Следовательно, они должны обладать гидрофильными и гидрофобными белковыми доменами, чтобы иметь возможность взаимодействовать со всеми компонентами..

    В белках, которые прикреплены к липидам, углеродная цепь закреплена в одном из слоев мембраны. Белок действительно не проникает в мембрану.

    Наконец, периферические не взаимодействуют напрямую с гидрофобной зоной мембраны. Напротив, они могут быть соединены посредством интегрального белка или полярными головками. Они могут быть расположены с обеих сторон мембраны.

    Процент белков в каждой мембране варьируется в широких пределах: от 20% в нейронах до 70% в митохондриальной мембране, поскольку для осуществления метаболических реакций, которые там происходят, требуется большое количество белковых элементов..

    ссылки

    1. Крафт, М. Л. (2013). Организация и функционирование плазматической мембраны: прохождение мимо липидных плотов. Молекулярная биология клетки, 24(18), 2765-2768.
    2. Лодиш, Х. (2002). Молекулярная биология клетки. 4-е издание. Гирлянда Наука
    3. Лодиш, Х. (2005). Клеточная и молекулярная биология. Ed. Panamericana Medical.
    4. Ломбард, J. (2014). Давным-давно клеточные мембраны: 175 лет исследований границ клеток. Биология прямой, 9(1), 32.
    5. Thibodeau, G.A., Patton, K.T., & Howard, K. (1998). Структура и функции. Elsevier Испания.

    Источник: https://ru.thpanorama.com/articles/biologa/membrana-plasmtica-caractersticas-funciones-y-estructura.html

    Сам себе врач
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: