Хлорирование метилциклогексана

Содержание
  1. 3.4. Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола)
  2. 1. Реакции замещения
  3. Галогенирование
  4. 2. Реакции окисления
  5. Горение в кислороде
  6. Каталитическое окисление кислородом
  7. Крекинг
  8. Дегидрирование
  9. Химические свойства циклоалканов
  10. 1. Реакции присоединения
  11. Гидрирование алкенов
  12. Гидрогалогенирование
  13. Гидратация
  14. Полимеризация
  15. Реакции окисления
  16. Реакции присоединения
  17. Химические свойства алкинов
  18. Гидрирование алкинов
  19. Тримеризация алкинов
  20. Димеризация алкинов
  21. Окисление алкинов
  22. Взаимодействие алкинов с основаниями
  23. Химические свойства ароматических углеводородов
  24. Нитрование
  25. Алкилирование
  26. Циклоалканы: строение, получение и химические свойства
  27. Строение циклоалканов
  28. Изомерия циклоалканов
  29. Геометрическая (цис-транс-) изомерия
  30. Номенклатура циклоалканов
  31. Химические свойства циклоалканов
  32. 1. Реакции присоединения к циклоалканам
  33. 1.1. Гидрирование циклоалканов
  34. 1.2. Галогенирование циклоалканов
  35. 1.3. Гидрогалогенирование
  36. 2.Реакции замещения
  37. 2.1. Галогенирование
  38. 2.2. Нитрование циклоалканов
  39. 2.3. Дегидрирование
  40. 3.1. Горение
  41. 3.2. Окисление
  42. Получение циклоалканов
  43. 3. Дегалогенирование дигалогеналканов
  44. ВНИМАНИЕ! Циануровая кислота и стабилизированный хлор. – Магазин
  45. График 1. Влияние концентрации цианурата на потерю свободного хлора за 1 час солнечного облучения.
  46. Торговые наименования продуктов, содержащих изоцианураты
  47. Ароматические УВ. Бензол
  48. Арены ряда бензола (моноциклические арены)
  49. Электронное строение молекулы бензола
  50. Физические свойства бензола
  51. Химические свойства бензола
  52. I. Реакции замещения
  53. II. Реакции присоединения
  54. III.Реакции окисления
  55. Получение бензола
  56. Изомерия и номенклатура гомологов бензола
  57. Физические свойства толуола
  58. III.Реакции окисления
  59. Получение толуола:

3.4. Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола)

Хлорирование метилциклогексана

Алканами (парафинами) называют нециклические углеводороды, в молекулах которых все атомы углерода соединены только одинарными связями. Другими словами в молекулах алканов отсутствуют кратные — двойные или тройные связи. Фактически алканы являются углеводородами, содержащими максимально возможное количество атомов водорода, в связи с чем их называют предельным (насыщенными).

Ввиду насыщенности, алканы не могут вступать в реакции присоединения.

Поскольку атомы углерода и водорода имеют довольно близкие электроотрицательности, это приводит к тому, что связи С-Н в их молекулах крайне малополярны. В связи с этим для алканов более характерны реакции протекающие по механизму радикального замещения, обозначаемого символом SR.

1. Реакции замещения

В реакциях данного типа происходит разрыв связей углерод-водород

RH + XY → RX + HY

или

Галогенирование

Алканы реагируют с галогенами (хлором и бромом) под действием ультрафиолетового света или при сильном нагревании. При этом образуется смесь галогенпроизводных с различной степенью замещения атомов водорода — моно-, ди- три- и т.д. галогенозамещенных алканов.

На примере метана это выглядит следующим образом:

Меняя соотношение галоген/метан в реакционной смеси можно добиться того, что в составе продуктов будет преобладать какое-либо конкретное галогенпроизводное метана.

Механизм реакции

Разберем механизм реакции свободнорадикального замещения на примере взаимодействия метана и хлора. Он состоит из трех стадий:

  1. инициирование (или зарождение цепи) — процесс образования свободных радикалов под действии энергии извне – облучения УФ-светом или нагревания. На этой стадии молекула хлора претерпевает гомолитический разрыв связи Cl-Cl c образованием свободных радикалов:

Свободными радикалами, как можно видеть из рисунка выше, называют атомы или группы атомов с одним или несколькими неспаренными электронами (Сl•, •Н, •СН3,•СН2• и т.д.);

2. Развитие цепи

Эта стадия заключается во взаимодействии активных свободных радикалов с неактивными молекулами. При этом образуются новые радикалы. В частности, при действии радикалов хлора на молекулы алкана, образуется алкильный радикал и хлороводород.  В свою очередь, алкильный радикал, сталкиваясь с молекулами хлора, образует хлорпроизводное и новый радикал хлора:

3) Обрыв (гибель) цепи:

Происходит в результате рекомбинации двух радикалов друг с другом в неактивные молекулы:

2. Реакции окисления

В обычных условиях алканы инертны по отношению к таким сильным  окислителям, как концентрированная серная и азотная кислоты,  перманганат и дихромат калия (КMnО4, К2Cr2О7).

Горение в кислороде

А) полное сгорание при избытке кислорода. Приводит к образованию углекислого газа и воды:

CH4 + 2O2 = CO2 + 2H2O

Б) неполное сгорание при недостатке кислорода:

2CH4 + 3O2 = 2CO + 4H2O

CH4 + O2 = C + 2H2O

Каталитическое окисление кислородом

В результате нагревания алканов с кислородом (~200 оС) в присутствии  катализаторов, из них может быть получено большое разнообразие органических продуктов: альдегиды, кетоны, спирты, карбоновые кислоты.

Например, метан, в зависимости природы катализатора, может быть окислен в метиловый спирт, формальдегид или муравьиную кислоту:

Крекинг

Крекинг (от англ. to crack — рвать)  — это химический процесс протекающий при высокой температуре, в результате которого происходит разрыв углеродного скелета молекул алканов с образованием молекул алкенов и алканов с обладающих меньшими молекулярными массами по сравнению с исходными алканами. Например:

CH3-CH2-CH2-CH2-CH2-CH2-CH3  → CH3-CH2-CH2-CH3 + CH3-CH=CH2

Крекинг бывает термический и каталитический. Для осуществления  каталитического крекинга, благодаря использованию катализаторов, используют заметно меньшие температуры по сравнению с термическим крекингом.

Дегидрирование

Отщепление водорода происходит в результате разрыва связей С—Н; осуществляется в присутствии катализаторов при повышенных температурах. При дегидрировании метана образуется ацетилен:

2CH4 → C2H2 + 3H2

Нагревание метана до 1200 °С приводит к его разложению на простые вещества:

СН4 →  С + 2Н2

При дегидрировании остальных алканов образуются алкены:

C2H6 → C2H4 + H2

При дегидрировании н-бутана образуются бутен-1 и бутен-2 (последний в виде цис- и транс-изомеров):

Химические свойства циклоалканов

Химические свойства циклоалканов с числом атомов углерода в циклах больше четырех, в целом практически идентичны свойствам алканов.

Для циклопропана и циклобутана, как ни странно,  характерны реакции присоединения. Это обусловлено большим напряжением внутри цикла, которое приводит к тому, что данные циклы стремятся разорваться.

Так циклопропан и циклобутан легко присоединяют бром, водород или хлороводород:

1. Реакции присоединения

Поскольку двойная связь в молекулах алкенов состоит из одной прочной сигма- и одной слабой пи-связи, они являются довольно активными соединениями, которые легко вступаю в реакции присоединения. В такие реакции алкены часто вступают даже в мягких условиях — на холоду, в водных растворах и органических растворителях.

Гидрирование алкенов

Алкены способны присоединять водород в присутствии катализаторов (платина, палладий, никель):

CH3—СН=СН2 + Н2 → CH3—СН2—СН3

Гидрирование алкенов легко протекает даже при обычном давлении и незначительном нагревании. Интересен тот факт, что для дегидрирования алканов до алкенов могут использоваться те же катализаторы, только процесс дегидрирования протекает при более высокой температуре и меньшем давлении.

Гидрогалогенирование

Как нетрудно заметить, присоединение галогеноводорода к молекуле несимметричного алкена должно, теоретически, приводить к смеси двух изомеров. Например, при присоединении бромоводорода к пропену должны были бы получаться продукты:

Тем не менее в отсутствие специфических условий (например, наличие пероксидов в реакционной смеси) присоединение молекулы галогеноводорода будет происходить строго селективно в соответствии с правилом Марковникова:

Присоединении галогеноводорода к алкену происходит таким образом, что водород присоединяется к атому углерода с большим числом атомов водорода (более гидрированному), а галоген — к атому углерода с меньшим числом атомов водорода (менее гидрированному).

Поэтому:

Гидратация

Данная реакция приводит к образованию спиртов, и также протекает в соответствии с правилом Марковникова:

Как легко догадаться, по причине того, что присоединение воды к молекуле алкена происходит согласно правилу Марковникова, образование первичного спирта возможно только в случае гидратации этилена:

CH2=CH2 + H2O → CH3-CH2-OH

Именно по такой реакции проводят основное количество этилового спирта в крупнотоннажной промышленности.

Полимеризация

Специфическим случаем реакции присоединения можно реакцию полимеризации, которая в отличие от галогенирования, гидрогалогенирования и гадратации, протекает про свободно-радикальному механизму:

Реакции окисления

Как и все остальные углеводороды, алкены легко сгорают в кислороде с образованием углекислого газа и воды. Уравнение горения алкенов в избытке кислорода имеет вид:

CnH2n + (3/2)nO2 → nCO2 + nH2O

В отличие от алканов алкены легко окисляются. При действии на алкены водного раствора KMnO4 обесцвечивание, что является качественной реакцией на двойные и тройные CC связи в молекулах органических веществ.

Окисление алкенов перманганатом калия в нейтральном или слабощелочном растворе приводит к образованию диолов (двухатомных спиртов):

C2H4 + 2KMnO4 + 2H2O → CH2OH–CH2OH + 2MnO2 + 2KOH (охлаждение)

В кислой среде происходит полное разрыв двойной связи с превращение атомов углерода образовывавших двойная связь в карбоксильные группы:

5CH3CH=CHCH2CH3 + 8KMnO4 + 12H2SO4 → 5CH3COOH + 5C2H5COOH + 8MnSO4 + 4K2SO4 + 17H2O (нагревание)

[attention type=yellow]

В случае, если двойная С=С связь находится в конце молекулы алкена, то в качестве продукта окисления крайнего углеродного атома при двойной связи образуется углекислый газ. Связано это с тем, что промежуточный продукт окисления – муравьиная кислота легко сама окисляется в избытке окислителя:

[/attention]

5CH3CH=CH2 + 10KMnO4 + 15H2SO4 → 5CH3COOH + 5CO2 + 10MnSO4 + 5K2SO4 + 20H2O (нагревание)

При окислении алкенов, в которых атом C при двойной связи содержит два углеводородных заместителя, образуется кетон. Например, при окислении 2-метилбутена-2 образуется ацетон и уксусная кислота.

Окисление алкенов, при котором происходит разрыв углеродного скелета по двойной связи используется для установления их структуры.

Реакции присоединения

Например, присоединение галогенов:

Бромная вода обесцвечивается.

В обычных условиях присоединение атомов галогена происходит по концам молекулы  бутадиена-1,3, при этом π-связи разрываются, к крайним атомам углерода присоединяются атомы брома, а свободные валентности образуют новую π-связь. Таким образом, как бы происходит «перемещение» двойной связи. При избытке брома может быть присоединена еще одна его молекула по месту образовавшейся двойной связи.

Химические свойства алкинов

Алкины являются ненасыщенными (непредельными) углеводородами в связи с чем способны вступать в реакции присоединения. Среди реакци присоединения для алкинов наиболее распространено электрофильное присоединение.

Гидрирование алкинов

Алкины реагируют с водородом в две ступени. В качестве катализаторов используют такие металлы как платина, палладий, никель:

Тримеризация алкинов

При пропускании ацетилена над активированным углем при высокой температуре из него образуется смесь различных продуктов, основным из которых является бензол – продукт тримеризации ацетилена:

Димеризация алкинов

Также ацетилен вступать в реакцию димеризации. Процесс протекает в присутствии солей меди как катализаторов:

Окисление алкинов

Алкины сгорают в кислороде:

СnH2n-2 + (3n-1)/2 O2 → nCO2 + (n-1)H2O

Взаимодействие алкинов с основаниями

Алкины с тройной C≡C на конце молекулы, в отличие от остальных алкинов, способны вступать в реакции, в которых атом водорода при тройной связи замещается металл. Например, ацетилен реагирует с амидом натрия в жидком аммиаке:

HC≡CH + 2NaNH2 → NaC≡CNa + 2NH3,

а также с аммиачным раствором оксида серебра, образуя нерастворимые солеподобные вещества называемые ацетиленидами:

Благодаря такой реакции можно распознать алкины с концевой тройной связью, а также выделить такой алкин из смеси с другими алкинами.

Следует отметить, что все ацетилениды серебра и меди являются взрывоопасными веществами.

Ацетилениды способны реагировать с галогенпроизводными, что используется  при синтезе более сложных органических соединений с тройной связью:

СН3-C≡CН + NaNН2 → СН3-C≡CNa + NН3

СН3-C≡CNa + CH3Br → СН3-C≡C-СН3 + NaBr

Химические свойства ароматических углеводородов

Ароматический характер связи влияет на химические свойства бензолов и других ароматических углеводородов.

Единая 6пи–электронная система намного более устойчива, чем обычные пи-связи. Поэтому для ароматических углеводородов более характерны реакции замещения, а не присоединения. В реакции замещения арены вступают по электрофильному механизму.

Нитрование

Лучше всего реакция нитрования протекает под  действием не чистой азотной кислоты, а ее смеси с концентрированной серной кислотой, так называемой нитрующей смеси:

Алкилирование

Реакция при которой один из атомов водорода при ароматическом ядре замещается на углеводородный радикал:

Также вместо галогенпроизводных алканов можно использовать алкены. В качестве катализаторов можно использовать галогениды алюминия, трехвалентного железа или неорганические кислоты.

Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/harakternye-himicheskie-svojstva-uglevodorodov

Циклоалканы: строение, получение и химические свойства

Хлорирование метилциклогексана

Циклоалканы – это предельные (насыщенные) углеводороды, которые содержат замкнутый углеродный цикл.

Общая формула циклоалканов CnH2n, где n≥3.

Строение, номенклатура и изомерия циклоалканов

Химические свойства циклоалканов

Получение циклоалканов

Строение циклоалканов

Атомы углерода в молекулах циклоалканов находятся в состоянии sp3-гибридизации и образует четыре σ-связи С–С и С–Н. В зависимости от размеров цикла меняются валентные углы.

В малых циклах (циклопропан и циклобутан) валентные углы между связями С–С сильно отличаются от валентных углов между связями С–С в алканах (109о35′). Поэтому в малых циклах возникает напряжение, которое приводит к высокой реакционной способности таких циклоалканов.

Самый простой циклоалкан — циклопропан, представляет, по сути, плоский треугольник.

σ-Связи в циклопропане называют «банановыми». Они не лежат вдоль оси, соединяющей ядра атомов, а отклоняются от неё, уменьшая напряжение в молекуле циклопропана.

 По свойствам «банановые» связи напоминают π-связи. Они легко разрываются.

Поэтому циклопропан очень легко вступает в реакции присоединения с разрывом углеродного цикла.

[attention type=red]

Остальные циклоалканы имеют неплоское строение. Молекула циклобутана имеет перегиб по линии, соединяющей первый и третий атомы углерода в кольце:

[/attention]

Циклобутан также вступает в реакции присоединения, но угловое напряжение в циклобутане меньше, чем в циклопропане, поэтому реакции присоединения к циклобутану протекают сложнее.

Большие циклы имеют более сложное, неплоское строение, вследствие чего угловое напряжение в молекулах больших циклоалканов почти отсутствует.

Циклоалканы с большим циклом не вступают в реакции присоединения. Для них характерны реакции замещения.

Строение циклопентана также неплоское, молекула представляет собой так называемый «конверт».

Молекула циклогексана не является плоским многоугольником и принимает различные конформации, имеющие названия «кресло» и «ванна»:

«кресло»                                                     «ванна»

Изомерия циклоалканов

Для  циклоалканов характерна структурная изомерия, связанная с разным числом углеродных атомов в кольце, разным числом углеродных атомов в заместителях и с положением заместителей в цикле.

  • Изомеры с разным числом атомов углерода в цикле отличаются размерами углеродного цикла.
Например.Изомеры с разным числом углеродных атомов в цикле – это этилциклопропан и метилциклобутан с общей формулой С5Н10
ЭтилциклопропанМетилциклобутан
  • Изомеры с разным числом атомов углерода в заместителях отличаются строением заместителей у одинакового углеродного цикла.
Например.Структурные изомеры с различным числом углеродных атомов в заместителях – 1-метил-2-пропилциклопентан  и 1,2-диэтилциклопентан
1-Метил-2-пропилциклопентан1,2-Диэтилциклопентан
  • Изомеры с разным положением одинаковых заместителей в углеродном цикле.
1,1-Диметилциклогексан1,2-Диметилциклогексан
  • Межклассовая изомерия: циклоалканы изомерны алкенам.
Например.Формуле С3Н6 соответствуют циклопропан и пропен.
ЦиклопропанПропилен

Геометрическая (цис-транс-) изомерия

У циклоалканов с двумя заместителями, расположенными у соседних атомов углерода в цикле цис-транс-изомерия обусловлена различным взаимным расположением в пространстве заместителей относительно плоскости цикла.

В цис-изомерах заместители находятся по одну сторону от плоскости цикла, в транс-изомерах – заместители расположены по разные стороны.
Например.В молекуле 1,2-диметилциклопропана две группы СН3 могут находиться по одну сторону от плоскости цикла (цис-изомер) или по разные стороны (транс-изомер):
цис-1,2-Диметилциклопропан транс-1,2-Диметилциклопропан

Для 1,1-диметилциклопропана цис-транс-изомерия не характерна.

Номенклатура циклоалканов

В названиях циклоалканов используется префикс -ЦИКЛО.

Название циклоалканаСтруктурная формула
Циклопропан
Циклобутан
Циклопентан
Циклогексан

Название циклоалканов строится по следующим правилам:

1.  Цикл принимают за главную углеродную цепь. При этом считают, что углеводородные радикалы, которые не входят в главной цепь,  являются в ней заместителями.

2. Нумеруют атомы углерода в цикле так, чтобы атомы углерода, которые соединены с заместителями, получили минимальные возможные номера. Причем нумерацию следует начинать с более близкого к старшей группе конца цепи.

3. Называют все радикалы, указывая впереди цифры, которые обозначают их расположение в главной цепи.

Для одинаковых заместителей эти цифры указывают через запятую, при этом количество одинаковых заместителей обозначается приставками ди- (два), три- (три), тетра- (четыре), пента- (пять) и т.д.

Например, 1,1-диметилциклопропан или 1,1,3-триметилциклопентан.

4. Названия заместителей со всеми приставками и цифрами располагают в алфавитном порядке.

Например: 1,1-диметил-3-этилциклопентан.

5. Называют углеродный цикл.

Химические свойства циклоалканов

Циклоалканы с малым циклом (циклопропан, циклобутан и их замещенные гомологи) из-за большой напряженности в кольце  могут вступать в реакции присоединения.

1. Реакции присоединения к циклоалканам

 Чем меньше цикл и чем больше угловое напряжение в цикле, тем легче протекают реакции присоединения. Способность вступать в реакции присоединения уменьшается в ряду: циклопропан > циклобутан > циклопентан.

1.1. Гидрирование циклоалканов

С водородом могут реагировать малые циклы, а также (в жестких условиях) циклопентан. При этом происходит разрыв кольца и образование алкана.

Циклопропан и циклобутан довольно легко присоединяют водород при нагревании в присутствии катализатора:

Циклопентан присоединяет водород в жестких условиях:

Бромирование протекает более медленно и избирательно.

Циклогексан и циклоалканы с большим число атомов углерода в цикле с водородом не реагируют.

1.2. Галогенирование циклоалканов

Циклопропан и циклобутан реагируют с галогенами, при этом тоже происходит присоединение галогенов к молекуле, сопровождающееся разрывом кольца.

Например. Циклопропан присоединяет бром с образованием 1,3-дибромпропана:

1.3. Гидрогалогенирование

Циклопропан и его гомологи с алкильными заместителями у трехчленного цикла вступают с галогеноводородами в реакции присоединения с разрывом цикла.

Например, циклопропан присоединяет йодоводород.
 Присоединение галогеноводородов к гомологам циклопропана с заместителями у трехатомного цикла (метилциклопропан и др.) происходит по правилу Марковникова.
Например, при присоединении бромоводорода к метилциклопропану преимущественно образуется 2-бромбутан

2.Реакции замещения

В больших циклах (циклопентане, циклогексане) благодаря неплоскому строению молекул не возникает  угловое напряжение. Поэтому большие циклы гораздо более устойчивы, чем малые, и реакции присоединения с разрывом связей С-С для них не характерны. В химических реакциях они ведут себя подобно алканам, вступая в реакции замещения без разрыва кольца.

2.1. Галогенирование

Галогенирование циклопентана, циклогексана и циклоалканов с большим количеством атомов углерода в цикле протекает по механизму радикального замещения.

Например, при хлорировании циклопентана на свету или при нагревании образуется хлорциклопентан

При хлорировании метилциклопентана замещение преимущественно протекает у третичного атома углерода:

2.2. Нитрование циклоалканов

При взаимодействии циклоалканов с разбавленной азотной кислотой при нагревании образуются нитроциклоалканы.

Например, нитрование циклопентана.

2.3. Дегидрирование

При нагревании циклоалканов в присутствии катализаторов протекает дегидрирование – отщепление водорода.

Циклогексан и его производные дегидрируются при нагревании и под действием катализатора до бензола и его производных.

Например, бензол образуется при дегидрировании циклогексана.
Например, при отщеплении водорода от метилциклогексана образуется толуол.

3.1. Горение

Как и все углеводороды, алканы горят до углекислого газа и воды. Уравнение сгорания циклоалканов в общем виде:

CnH2n + 3n/2O2 → nCO2 + nH2O + Q

Например, горение циклопентана.

2C5H10 + 15O2 → 10CO2 + 10H2O + Q

3.2. Окисление

При окислении циклогексана азотной кислотой или в присутствии катализатора образуется адипиновая (гександиовая) кислота:

Получение циклоалканов

Алканы с длинным углеродным скелетом, содержащие  5 и более атомов углерода в главной цепи, при нагревании в присутствии металлических катализаторов образуют циклические соединения.

При этом протекает дегидроциклизация – процесс  отщепления водорода с образованием замкнутого цикла.

Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:

[attention type=green]

Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

[/attention]

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:

Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:

Дегидроциклизация алканов — важный промышленный способ получения циклоалканов.

2. Гидрирование бензола и его гомологов

При гидрировании бензола при нагревании и в присутствии катализатора образуется циклогексан:

При гидрировании толуола образуется метилциклогексан:

Этим способом можно получить только циклогексан и его гомологи с шестичленным кольцом.

3. Дегалогенирование дигалогеналканов

При действии активных металлов на дигалогеналканы, в которых между атомами галогенов находится три и более атомов углерода.

Например, 1,4-дибромбутан реагирует с цинком с образованием циклобутана

Таким образом можно синтезировать циклоалканы заданного строения, в том числе циклоалканы с малыми циклами (С3 и С4).

Источник: https://chemege.ru/cikloalkany/

ВНИМАНИЕ! Циануровая кислота и стабилизированный хлор. – Магазин

Хлорирование метилциклогексана

Недавно в первый раз столкнулись с такой проблемой: в бассейне с большой проходимостью людей (в сауне) вода стала “молоком” – очень мутная.

Всё проверили – химия свежая (обработка хлорная, комбинированная – быстро и медленно растворимый таблетированный хлор, Альгицид, картриджный коагулянт – всё немецкого производства).

Со слов владельца – обратная промывка происходит по расписанию (1 раз в неделю), взяли замеры – рН и Сl в норме. Странно… Стали разбираться в причине и вот что выяснили!

При обеззараживании воды в бассейне, в качестве хлорсодержащих дезинфектантов чаще всего применяются препараты на основе:

1.Солей хлорноватистой кислоты – гипохлоритов; 

2. Хлорпроизводных изоциануровой кислоты – хлор-изоциануратов;

3. Дезинфицирующие средства на основе гипохлоритов;

Чтобы вода в вашем бассейне всегда была чистой и прозрачной, при использовании гипохлорита натрия в качестве дезинфицирующего средства, необходимо дополнительно добавлять в воду стабилизатор.

Стабилизатор – общее название, применяемое для использования циануровой кислоты (cyanuric acid – также известной как изоциануровая кислота), или её хлорированных соединений: дихлор-изоцианурата натрия и трихлор-изоциануровой кислоты.

При добавлении в открытый бассейн циануровая кислота свободно связывается с хлором, что сводит к минимуму разрушение добавленного в воду раствора гипохлорита натрия ультрафиолетовым излучением солнца.

График 1. Влияние концентрации цианурата на потерю свободного хлора за 1 час солнечного облучения.

Как видно, если принять начальную концентрацию за 100%, то при отсутствии стабилизатора в воде бассейна, через час концентрация понизится до 65%, то есть упадёт в 1,5 раза!

Видно также, что повышение концентрации стабилизатора в воде бассейна более 50 мг/л не оказывает дальнейшего влияния на замедление распада активного хлора под воздействием УФ облучения.

Добавление циануровой кислоты уменьшает деградацию свободного хлора с помощью УФ-излучения, но также существует определенный недостаток. Циануровая кислота как-бы маскирует, прячет свободный хлор от солнца. Это свойство цианурата “маскировать” свободный хлор, позволяет увеличить интервалы добавления гипохлорита натрия к воде бассейна. 

В процессе дезинфекции свободный хлор постоянно расходуется на уничтожение патогенных микробов. А сама изоциануровая кислота никуда не расходуется, и поэтому постепенно накапливается в воде бассейна.

При чрезмерном содержании изоциануровой кислоты, последняя уже будет работать не как стабилизатор, а как блокиратор хлора.

[attention type=yellow]

 В результате, при дальнейшем добавлении хлор-изоцианурата, эффект обеззараживания воды уже не достигается, как следствие – размножение патогенных микробов и рост водорослей. 

[/attention]

Без прекращения использования дихлора или трихлора уровень циануровой кислоты может увеличиваться до неконтролируемого уровня. Правильное использование стабилизатора заключается в добавлении циануровой кислоты, дихлора или трихлора до тех пор, пока концентрация циануровой кислоты не достигнет 50 мг/л.

При такой концентрации следует использовать нециануратсодержащий хлорный продукт, такой как гипохлорит натрия (кальция или лития) до тех пор, пока концентрация циануровой кислоты не снизится до 25 мг/л.

Затем дозирование с использованием продукта из цианированного хлора можно возобновить опять до достижения 50 мг/л.

Циануровая кислота, однажды добавленная в воду, никуда из неё не девается. То есть потери концентрации цианурата в воде бассейна всегда обусловлены сменой воды. Повышение концентрации цианурата в бассейне, может быть вызвано испарением воды. Поэтому необходимо всегда отслеживать, каким образом вода сменяется в бассейне.

Добавление воды вместо испарившейся не приведёт к изменению исходной концентрации циануровой кислоты, но замена воды на свежую всегда уменьшит её концентрацию! Если в результате сильного ливня произошла смена воды с переливом воды за пределы чаши бассейна – проверьте концентрацию циануровой кислоты, и если её меньше 25 мг/л, – добавьте стабилизатор в виде дихлор или трихлор таблеток. 

Для избежания эффекта «перестабилизации» необходимо контролировать и, при необходимости, уменьшать содержание изоциануровой кислоты в бассейне путем добавления свежей воды (разбавления), либо применять хлорные дезинфектанты не содержащие изоциануровой кислоты (стабилизатор применять отдельно).

 Кроме того, изоциануровая кислота отрицательно влияет на результаты измерения автоматических станций измерения и регулирования. Коэффициент такого влияния  составляет 0,2. Т.е.

при  возникновении «перестабилизации» воды уже невозможно определить, обеспечено ли в воде бассейна содержание хлора в допустимом диапазоне.

Торговые наименования продуктов, содержащих изоцианураты

1. Трихлор-изоциануровая кислота (C3N3O3Cl3 – трихлор) выпускается в продажу под следующими торговыми наименованиями или содержится в следующих продуктах:

  • “Хлориклар” (Chloriklar) Производитель: BAYROL, Германия
  • “Хлорилонг” (Chlorilong) Производитель: BAYROL, Германия
  • “AquaDoctor C-90”, КНР
  • “Aquatop” Хлорин Д200, Германия

1. Дихлор-изоцианурат натрия (C3O3N3Cl2Na – дихлор) выпускается в продажу под следующими торговыми наименованиями или содержится в следующих продуктах:

  • “Хлорификс” (Chlorifix) Производитель: BAYROL, Германия
  • “Хлоритэкс” Производитель: Маркопул-Кемиклс, Россия
  • “AquaDoctor C-60” КНР
  • “Лонгафор” Производитель: Маркопул-Кемиклс, Россия
  • “Aquatop” Хлорин Д20, Германия

ПОДВЕДЁМ ИТОГ: 

  • Стабилизированный бассейн должен работать как минимум на 0,3 мг/л остаточного свободного хлора;
  • Cтабилизатор не должен использоваться в крытом бассейне (+ в бассейнах, обработанных бромом);
  • Цинаураты не желательно использовать в спа-бассейне.
  • Максимальная допустимая концентрация циануровой кислоты в бассейне – 50 мг / л./ минимальная – 25 мг/л.

Источник: https://cleanpool.by/news/491041-vnimanie-cianurovaya-kislota-i-stabilizirovannyy-hlor/

Ароматические УВ. Бензол

Хлорирование метилциклогексана

Ароматические УВ (арены) – это УВ, молекулы которых содержат одно или несколько бензольных колец.

Примеры ароматических УВ:

Арены ряда бензола (моноциклические арены)

Общая формула: CnH2n-6, n≥6

Простейшим представителем ароматических УВ является бензол, его эмпирическая формула С6Н6.

Электронное строение молекулы бензола

Общая формула моноциклических аренов CnH2n-6 показывает, что они являются ненасыщенными соединениями.

В 1856 г. немецкий химик А.Ф. Кекуле предложил циклическую формулу бензола с сопряженными связями (чередуются простые и двойные связи) — циклогексатриен-1,3,5:

Такая структура молекулы бензола не объясняла многие свойства бензола:

  • для бензола характерны реакции замещения, а не реакции присоединения, свойственные ненасыщенным соединениям. Реакции присоединения возможны, но протекают труднее, чем для алкенов;
  • бензол не вступает в реакции, являющиеся качественными реакциями на непредельные УВ (с бромной водой и раствором КМnО4).

Проведенные позже электронографические исследования показали, что все связи между атомами углерода в молекуле бензола имеют одинаковую длину 0,140 нм (среднее значение между длиной простой связи С—С 0,154 нм и двойной связи С=С 0,134 нм). Угол между связями у каждого атома углерода равен 120о. Молекула представляет собой правильный плоский шестиугольник.

Современная теория для объяснения строения молекулы С6Н6 использует представление о гибридизации орбиталей атома углерода.

Атомы углерода в бензоле находятся в состоянии sp2-гибридизации. Каждый атом «С» образует три σ-связи (две с атомами углерода и одну с атомом водорода). Все σ-связи находятся в одной плоскости:

[attention type=red]

Каждый атом углерода имеет один р-электрон, который не участвует в гибридизации. Негибридизованные р-орбитали атомов углерода находятся в плоскости, перпендикулярной плоскости σ-связей.

[/attention]

Каждое р-облако перекрывается с двумя соседними р-облаками, и в результате образуется единая сопряженная π-система (вспомните эффект сопряжения р-электронов в молекуле бутадиена-1,3, рассмотренный в теме «Диеновые углеводороды»):

Сочетание шести σ-связей с едиой π-системой называется ароматической связью.

Цикл из шести атомов углерода, связанных ароматической связью, называется бензольным кольцом, или бензольным ядром.

В соответствии с современными представлениями об электронном строении бензола молекулу С6Н6 изображают следующим образом:

Физические свойства бензола

Бензол при обычных условиях — бесцветная жидкость; toпл= 5,5оС; toкип. = 80оС; имеет характерный запах; не смешивается с водой, хороший растворитель, сильно токсичен.

Химические свойства бензола

Ароматическая связь определяет химические свойства бензола и других ароматических УВ.

6π-электронная система является более устойчивой, чем обычные двухэлектроиные π-связи. Поэтому реакции присоединения менее характерны для ароматических УВ, чем для непредельных УВ. Наиболее характерными для аренов являются реакции замещения.

I. Реакции замещения

1.Галогенирование

2.Нитрование

Реакцию осуществляют смесью концентрированных азотной HNO3 и серной H2SO4 кислот (нитрующая смесь):

3.Сульфирование

4.Алкилирование (замещение атома «Н» на алкильную группу) – реакции Фриделя-Крафтса, образуются гомологи бензола:

Вместо галогеналканов можно использовать алкены (в присутствии катализатора – AlCl3 или неорганической кислоты):

II. Реакции присоединения

1.Гидрирование

2.Присоединение хлора

III. Реакции окисления

1. Горение

2С6Н6 + 15О2 → 12СО2 + 6Н2О

2. Неполное окисление (KMnO4 или K2Cr2O7 в кислой среде). Бензольное кольцо устойчиво к действию окислителей. Реакция не происходит.

Получение бензола

В промышленности:

1) переработка нефти и угля;

2) дегидрирование циклогексана:

3) дегидроциклизация (ароматизация) гексана:

4) тримеризация ацетилена:

В лаборатории:

Сплавление солей бензойной кислоты со щелочами:

Изомерия и номенклатура гомологов бензола

Любой гомолог бензола имеет боковую цепь, т.е. алкильные радикалы, связанные с бензольным ядром. Первый гомолог бензола представляет собой бензольное ядро, связанное с метильным радикалом:

Толуол не имеет изомеров, поскольку все положения в бензольном ядре равноценны.

Для последующих гомологов бензола возможен один вид изомерии – изомерия боковой цепи, которая может быть двух видов:

1) изомерия числа и строения заместителей;

2) изомерия положения заместителей.

Физические свойства толуола

Толуол — бесцветная жидкость с характерным запахом, не растворимая в воде, хорошо растворяется в органических растворителях. Толуол менее токсичен, чем бензол.

III.Реакции окисления

1.Горение
C6H5CH3 + 9O2 → 7CO2 + 4H2O

2. Неполное окисление

В отличие от бензола его гомологи окисляются некоторыми окислителями; при этом окислению подвергается боковая цепь, в случае толуола – метильная группа. Мягкие окислители типа MnO2 окисляют его до альдегидной группы, более сильные окислители (KMnO4) вызывают дальнейшее окисление до кислоты:

Любой гомолог бензола с одной боковой цепью окисляется сильным окислителем типа KMnO4 в бензойную кислоту, т.е. происходит разрыв боковой цепи с окислением отщепившейся части ее до СО2; например:

При наличии нескольких боковых цепей каждая из них окисляется до карбоксильной группы и в результате образуются многоосновные кислоты, например:

Получение толуола:

В промышленности:

1) переработка нефти и угля;

2) дегидрирование метилциклогексана:

3) дегидроциклизация гептана:

В лаборатории:

1) алкилирование по Фриделю-Крафтсу;

2) реакция Вюрца-Фиттига (взаимодействие натрия со смесью галогенбензола и галогеналкана):

Источник: https://al-himik.ru/aromaticheskie-uv-benzol/

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: