Схема строения днк и рнк

Содержание
  1. 2.3.4. Органические вещества клетки. Нуклеиновые кислоты
  2. Дезоксирибонуклеиновая кислота (ДНК)
  3. Рибонуклеиновая кислота (РНК)
  4. Аденозинтрифосфорная кислота – АТФ
  5. Часть А
  6. Часть В
  7. Часть  С
  8. Нуклеиновые кислоты – виды, строение и функции
  9. Нуклеиновые кислоты и их строение
  10. Функции нуклеотидов
  11. Значение ДНК
  12. Свойства РНК
  13. История исследований
  14. Чем РНК отличается от ДНК
  15. 1. ДНК транскрибируется в РНК
  16. 2. РНК транслируется в белки
  17. 3. Нуклеотидная последовательность
  18. 4. Одна спираль, две спирали
  19. 5. Различные типы молекул РНК
  20. Схема строения днк и рнк
  21. Строение и функции ДНК и РНК (таблица)
  22. Нуклеиновые кислоты – сложные биополимеры
  23. Пространственная структура вещества наследственности
  24. Мономеры нуклеиновых кислот
  25. Рибонуклеиновая кислота
  26. Функции ДНК и РНК в организме
  27. Каковы особенности вещества наследственности вирусов?
  28. РНК-содержащие вирусы
  29. Днк (дезоксирибонуклеиновая кислота)
  30. Строение ДНК
  31. Строение нуклеотидов в молекуле ДНК
  32. Уровни структуры ДНК
  33.  Правило Чаргаффа
  34. Модель ДНК Уотсона-Крика
  35. Интересные факты о ДНК

2.3.4. Органические вещества клетки. Нуклеиновые кислоты

Схема строения днк и рнк

Нуклеиновые кислоты были открыты в 1868 г. швейцарским ученым Ф. Мишером. В организмах существует несколько видов нуклеиновых кислот, которые встречаются в различных органоидах клетки – ядре, митохондриях, пластидах.

К нуклеиновым кислотам относятся ДНК, и-РНК, т-РНК, р-РНК.

Дезоксирибонуклеиновая кислота (ДНК)

  – линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных (соответствующих друг другу по конфигурации) цепей. Пространственная структура молекулы ДНК была смоделирована американскими учеными Джеймсом Уотсоном и Френсисом Криком в 1953 г.
Мономерами ДНК являются нуклеотиды.

Каждый нуклеотидДНК состоит из пуринового (А – аденин или Г – гуанин) или пиримидинового (Т – тимин или Ц – цитозин) азотистого основания, пятиуглеродного сахара  – дезоксирибозы и фосфатной группы.

Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина – цитозин. Пара А – Т соединена двумя водородными связями, а пара Г – Ц – тремя.

При репликации (удвоении) молекулы ДНК водородные связи рвутся и цепи расходятся и на каждой из них синтезируется новая цепь ДНК. Остов цепей ДНК образован сахарофосфатными остатками.
Последовательность нуклеотидов в молекуле ДНК определяет ее специфичность, а также специфичность белков организма, которые кодируются этой последовательностью.

Эти последовательности индивидуальны и для каждого вида организмов, и для отдельных особей.
Пример: дана последовательность нуклеотидов ДНК: ЦГА – ТТА – ЦАА.На информационной РНК (и-РНК) будет синтезирована цепь ГЦУ – ААУ – ГУУ, в результате чего выстроится цепочка аминокислот: аланин – аспарагин – валин.

При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а, следовательно изменится и белок, кодируемый данным геном. Изменения в составе нуклеотидов или их последовательности называются мутацией.

Рибонуклеиновая кислота (РНК)

  – линейный полимер, состоящий из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар – рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.
Синтезируются РНК в ядре.

Процесс называется транскрипция — это биосинтез молекул РНК на соответствующих участках ДНК; первый этап реализации генетической информации в клетке, в процессе которого последовательность нуклеотидов ДНК «переписывается» в нуклеотидную последовательность РНК.

 
Молекулы РНК формируются на матрице, которой служит одна из цепей ДНК, последовательность нуклеотидов в которой определяет порядок включения рибонуклеотидов по принципу комплементарности. РНК-полимераза, продвигаясь вдоль одной из цепей ДНК, соединяет нуклеотиды в том порядке, который определен матрицей. Образовавшиеся молекулы РНК называют транскриптами.

 
Виды РНК.
Матричная   или информационная  РНК. Синтезируется в ядре при участии фермента РНК-полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Ее функция – снятие информации с ДНК и передача ее к месту синтеза белка – на рибосомы. Составляет 5% РНК клетки.
Рибосомная РНК  – синтезируется в ядрышке и входит в состав рибосом.

Составляет 85% РНК клетки.
Транспортная РНК – транспортирует аминокислоты к месту синтеза белка. Имеет форму клеверного листа и состоит из 70—90 нуклеотидов.

Аденозинтрифосфорная кислота – АТФ

– представляет собой нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты, в двух из которых запасается большое количество энергии.

При отщеплении одного остатка фосфорной кислоты освобождается 40 кДж/моль энергии.  Способность запасать такое количество энергии делает АТФ ее универсальным источником.

Синтез АТФ происходит в основном в митохондриях.

Часть А

А1. Мономерами ДНК и РНК являются1) азотистые основания 2) фосфатные группы 3) аминокислоты 4) нуклеотиды

А2. Функция информационной РНК:

1) удвоение информации                            2) снятие информации с ДНК3) транспорт аминокислот на рибосомы   4) хранение информации

А3. Укажите вторую цепь ДНК, комплементарную первой: АТТ – ГЦЦ – ТТГ

1) УАА – ТГГ – ААЦ          3) УЦЦ – ГЦЦ – АЦГ2) ТАА – ЦГГ – ААЦ          4) ТАА – УГГ – УУЦ

А4. Подтверждением гипотезы, предполагающей, что ДНК является генетическим материалом клетки, служит:

1) количество нуклеотидов в молекуле2) индивидуальность ДНК3) соотношение азотистых оснований (А = Т, Г= Ц)4) соотношение ДНК в гаметах и соматических клетках (1:2)

А5. Молекула ДНК способна передавать информацию благодаря:

1) последовательности нуклеотидов 2) количеству нуклеотидов3) способности к самоудвоению        4) спирализации молекулы

А6. В каком случае правильно указан состав одного из нуклеотидов РНК

1) тимин – рибоза – фосфат   2) урацил – дезоксирибоза – фосфат3) урацил – рибоза – фосфат

4) аденин – дезоксирибоза – фосфат

Часть В

В1. Выберите признаки молекулы ДНК1) Одноцепочная молекула  2) Нуклеотиды – АТУЦ3) Нуклеотиды – АТГЦ        4) Углевод – рибоза5) Углевод – дезоксирибоза 6) Способна к репликации

В2. Выберите функции, характерные для молекул РНК эукариотических клеток

1) распределение наследственной информации2) передача наследственной информации к месту синтеза белков3) транспорт аминокислот к месту синтеза белков4) инициирование репликации ДНК5) формирование структуры рибосом

6) хранение наследственной информации

Часть  С

С1. Установление структуры ДНК позволило решить ряд проблем. Какие, по вашему мнению, это были проблемы и как они решились в результате этого открытия?
С2. Сравните нуклеиновые кислоты по составу и свойствам.

Источник: https://biology100.ru/index.php/materialy-dlya-podgotovki/kletka-kak-biologicheskaya-sistema/2-3-4-organicheskie-veshchestva-kletki-nukleinovye-kisloty

Нуклеиновые кислоты – виды, строение и функции

Схема строения днк и рнк

В природе существует два вида нуклеиновых кислот — рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). Основанием каждой из них является азотистое основание, остаток фосфорной кислоты и пятиуглеродный сахар.

В состав ДНК входит четыре разновидности нуклеотидов, отличие которых заключается в азотистом соединении:

  • А — аденин;
  • Т — тимин;
  • Ц — цитозин;
  • Г — гуанин.

Что касается РНК, то они тоже имеют несколько видов в зависимости от азотистого основания:

  • У — урацилом;
  • Ц — цитозин;
  • Г — гуанин;
  • А — аденин.

Поговорим и о физических свойствах нуклеотидов. Они легко растворяются в воде, но при этом практически нерастворимы в растворителях, имеющих органическое происхождение. Очень восприимчивы к температурным перепадам, а также критическим показателям значения уровня рН.

Молекулы ДНК обладают весомой молекулярной массой, благодаря чему могут фрагментироваться в результате механического воздействия.

Нуклеиновые кислоты и их строение

Прежде всего необходимо узнать, что нуклеотидами являются мономеры нуклеиновых кислот. Они соединены между собой линейно, формируя длинные молекулярные соединения нуклеиновых кислот. Самыми длинными полимерами являются цепочки молекул ДНК. Как правило, длина молекул РНК значительно меньше, но при этом может отличаться (зависит от типа).

При формировании полинуклеотидного соединения остатки фосфорной кислоты взаимодействуют с трехатомным углеродом пентозы. Аналогичная связь формируется между фосфорной кислотой и пятиатомным углеродом сахара непосредственно в нуклеиновой кислоте.

Исходя из этого, индивидуальная характеристика нуклеиновой кислоты — это последовательность пентозы с мостиками фосфорных кислот. Азотистые основания отделяются по сторонам.

[attention type=yellow]

Стоит добавить, что молекулы ДНК не только длиннее в сравнении с РНК, но и состоят из нескольких цепей, которые соединены между собой химически водородными связями. Такие структурные связи формируются по принципу комплементарности: гуанин комплементарен цитозину, а аденин — тимину.

[/attention]

Нуклеотиды содержат в себе такие вещества:

Нуклеотиды Остаток фосфорной кислоты Соединения азота Пятиуглеродный сахар
РНК + Рибоза
ДНК + Дезоксирибоза

Образоваться такие связи могут и в структурах РНК, но водородные связи формируются между нукленовыми кислотами одной цепи.

Функции нуклеотидов

Местонахождение в клетках аминокислот, белка и нуклеотидов поддерживает их жизнедеятельность, а также сохранение, передачу и верную реализацию генетической наследственности. Стоит в отдельности рассмотреть функции ДНК, РНК и их разновидностей в жизни живых организмов.

Значение ДНК

В клетках ДНК вся информация в основном сосредоточена в ядре клетки.

Бактериальная среда, как правило, в формуле занимает одну кольцевую молекулу, находится в неправильной формы образовании в цитоплазме, именуемым нуклеотидом.

Гены, входящие в состав наследственной информации генома, являются единицей передачи генетической наследственности. Признак частицы — открытая рама считывания.

  1. Самая важная биологическая функция вида — генетическая, клетка является носителем генетической информации (благодаря этой особенности, каждый вид на планете обладает своими индивидуальными особенностями).
  2. Наследственную информацию ДНК способно передавать в ряду целых поколений не без дополнительного участия и РНК.
  3. Осуществляет процессы регуляции биосинтеза белка.

Хранение и передача информации (генетической предрасположенности) осуществляется за счет биосинтеза белка посредством и-РНК, т-РНК.

Свойства РНК

В природе различают три разновидности РНК, каждая из которых предназначена для выполнения особой роли в осуществлении синтеза белка.

  1. Транспортная предназначена для транспортировки активированных аминокислот по организму к рибосомам. Это необходимо для осуществления синтеза полипептидных молекул. Исследования показали, что одна транспортная молекула способна связаться лишь с одной из 20 аминокислот. Они служат в качестве транспортировщиков специфических аминокислот и углеводов. Длина транспортной цепи значительно короче матричной, в состав входит приблизительно 80 нуклеотидов, визуально имеет вид клеверного листа.
  2. Матричная занимается копированием наследственного кода из ядра в цитоплазму. За счет этого процесса осуществляется синтез разнообразных белков. Схема строения представляет собой одноцепочную молекулу, она является неотъемлемой составляющей цитоплазмы. В составе молекулы содержится до нескольких тысяч нуклеотидов, они занимаются транспортировкой наследственной информации через мембрану ядра к очагу синтеза на рибосоме. Копирование информации осуществляется посредством транскрипции.
  3. Рибосомная задействует около 73 белков для формирования рибосом. Они собой представляют клеточные органеллы, на которых осуществляется сбор полипептидных молекул. Основные задачи рибосомной молекулы — это формирование центра рибосомы (активного); неотъемлемый структурный элемент рибосом, обеспечивающий их правильное функционирование; первоначальное взаимодействие рибосомы с кодоном-инициатором для выявления рамки считывания; обеспечение взаимодействия рибосомных молекул с транспортными.

История исследований

На протяжении десятилетий ведущие ученые мира занимались исследованием нуклеотидов. Рассмотрим более подробно историю изучения нуклеотидов.

  • Из экстракта мышц быка в 1847 году было изъято вещество, которое в скором было названо «инозиновая кислота». Это вещество и стало первым изученным в мире нуклеотидом. В течение нескольких последующих десятилетий ученые занимались изучением его химического строения.
  • Немного позднее швейцарским выдающимся химиком было открыто новое вещество, в составе которого содержался фосфор. Вещество не разрушалось под действием ферментов протеолитов. Также ему были свойственны выраженные кислотные свойства. Вещество было названо «нуклеин».
  • Рихард Альтман в 1889 году ввел в науку термин «нукленовая кислота», а также изобрел способ извлечения нуклеотидов, в составе которого отсутствуют белковые примеси.
  • В 40-х годах XX века научная группа под руководством Тодда Александера проводила масштабные синтетические лабораторные исследования в области нуклеозидов и нуклеотидов. Результат их опытов — изучение всех деталей стереохимии и химического строения нуклеотидов. Благодаря этим работам, выдающийся ученый в 1958 года был награжден Нобелевской премией в области химии.
  • Чаргаффом в 1951 году была выявлена закономерность содержания в кислотах нуклеотидов разных видов. Впоследствии результаты исследований получили название Правила Чаргаффа.
  • Несколькими годами позднее была подтверждена вторичная структура ДНК. Двойную спираль открыли биологи и химики Крик и Уотсон.

Нуклеотиды — это неотъемлемая составляющая каждой клетки живого организма, обеспечивающая ее жизнедеятельность, а также хранение, транспортировку и реализацию наследственной (генетической) наследственности. Ученые посвятили годы изучению видов и строения молекул, что открывает перед человеком большие возможности.

Источник: https://nauka.club/biologiya/nukleinovye-kisloty.html

Чем РНК отличается от ДНК

Схема строения днк и рнк

Большинство из вас слышали о трехбуквенных аббревиатурах ДНК и РНК. Некоторые из вас могут даже знать, к чему они относятся. Дезоксирибонуклеиновая кислота (ДНК) часто упоминается в связи с тем, что она в буквальном смысле диктует дальнейшее развитие организма.

Рибонуклеиновая кислота (РНК) является менее популярной аббревиатурой, чем ДНК, так как она не в центре внимания, но она так же важна.

Хотя между этими двумя молекулами есть много общего (да, они являются молекулами), их различия гораздо более интересны, ведь именно в этом кроются их основные функции.

По данным Национальной медицинской библиотеки США, ДНК каждого человека состоит из трех миллиардов фундаментальных единиц. Кроме того, более 99 процентов этих единиц одинаковы для всех людей. Другими словами, посмотрите вокруг и обратите внимание, насколько мы все разные. Только 1% из трех миллиардов достаточно, чтобы сделать нас уникальными во многих отношениях.

Эти фундаментальные блоки в последовательности ДНК образуют гены, так же как буквы в предложении создают слова. Подобно тому, как мы используем слова, чтобы доносить свои мысли друг другу, клетка использует гены в качестве инструкций для создания белков.

ДНК и РНК являются частью одного из самых важных понятий в биологии, а именно центральной догмы, которая относится к процессу превращения ДНК в РНК, которая превращается в белок.

ДНК, расположенная глубоко внутри клетки в ее ядре, превращается в РНК во время процесса, который называется транскрипцией. Эта РНК, будучи копией ДНК, затем транслируется во все белки, которые делают нас теми, кто мы есть, и поддерживают наши жизненные процессы. Эта центральная догма уже указывает на два существенных различия между ДНК и РНК:

1. ДНК транскрибируется в РНК

ДНК жизненно важна для размножения клеток и для развития организмов. ДНК содержит все гены, которые превращают организм в то, чем он является. Таким образом, ДНК драгоценна и должна быть защищена. Он расположен в ядре, которое никогда не покидает.

Во время транскрипции копии ДНК создаются в форме РНК, которая в свою очередь продолжает кодировать белки.

Разница между этими двумя молекулами заключается в том, что процесс транскрипции идет только одним путем, а именно ДНК превращается в РНК, и никогда наоборот.

2. РНК транслируется в белки

Итак, учитывая вышесказанное, РНК является копией ДНК и готова к превращению в белки.

Этот процесс называется трансляцией, и он происходит в рибосомах или небольших процессорных единицах, которые читают строительные блоки РНК, называемые нуклеотидами.

Каждые три нуклеотида кодируют аминокислоту в ряду аминокислот, которые составляют белок. Только РНК может быть переведена в белки, а не ДНК.

Учитывая эти два различия, вы уже много знаете о двух молекулах. Одно из сходств между ними состоит в том, что оба являются длинноцепочечными молекулами или длинными цепочками букв, которые являются важными строительными блоками для всего, что следует после, а именно для нуклеотидов. Нуклеотидов всего четыре, что подводит нас к следующему различию между двумя молекулами.

3. Нуклеотидная последовательность

Молекула ДНК состоит из четырех нуклеотидов, а именно цитозина, гуанина, аденина и тимина. Каждый нуклеотид состоит из фосфатной группы, сахарной группы и азотистого основания. Молекула РНК также представляет собой цепочку из четырех нуклеотидов, а именно цитозина, гуанина, аденина и урацила.

4. Одна спираль, две спирали

ДНК является двухспиральной молекулой. РНК, с другой стороны, состоит только из одной цепи нуклеотидов. Две цепи ДНК удерживается вместе молекулярными связями между нуклеотидами, в результате чего цитозин связывается с гуанином, а аденин связывается с тимином (или урацилом в РНК).

5. Различные типы молекул РНК

Существует несколько различных моделей молекул РНК в зависимости от выполняемых функций. К ним относятся биологически активные РНК, такие как иРНК, тРНК и рРНК. Первая, а именно иРНК, несет информацию ДНК из ядра в рибосому.

В свою очередь, тРНК относится к трансферной РНК, которая важна для распознавания трехбуквенного кода, или кодона, который кодирует конкретную аминокислоту.

Рибосомная РНК, или рРНК, лежит в основе рибосомального механизма, который производит белки благодаря связыванию аминокислот.

[attention type=red]

Теперь, когда вы знаете немного больше о ДНК и РНК, будьте уверены, что между этими двумя молекулами есть еще больше различий. Они подчеркивают не только то, насколько продвинулись наши представления о молекулярной биологии, но и то, насколько точной и элегантной является природа матери в процессах, которые так важны в жизни.

[/attention]

Источник: https://zen.yandex.ru/media/different_angle/chem-rnk-otlichaetsia-ot-dnk-5d739751433ecc00ad53732d

Схема строения днк и рнк

Схема строения днк и рнк

Строение и функции ДНК и РНК (таблица)

Схема строения днк и рнк

Хорошо известно, что все формы живой материи, начиная от вирусов и заканчивая высокоорганизованными животными (в том числе человеком), обладают уникальным наследственным аппаратом. Он представлен молекулами двух видов нуклеиновых кислот: дезоксирибонуклеиновой и рибонуклеиновой.

В этих органических веществах закодирована информация, которая передается от родительских особей к потомству при размножении.

В данной работе мы изучим как строение, так и функции ДНК и РНК в клетке, а также рассмотрим механизмы, лежащие в основе процессов передачи наследственных свойств живой материи.

Как оказалось, свойства нуклеиновых кислот, хотя и имеют некоторые общие признаки, тем не менее во многом различаются между собой. Поэтому мы сравним функции ДНК и РНК, осуществляемые этими биополимерами в клетках различных групп организмов. Таблица, представленная в работе, поможет разобраться, в чем состоит их принципиальное отличие.

Нуклеиновые кислоты – сложные биополимеры

Открытия в области молекулярной биологии, происшедшие в начале ХХ столетия, в частности, расшифровка строения дезоксирибонуклеиновой кислоты, послужили толчком для развития современной цитологии, генетики, биотехнологии и генной инженерии.

С точки зрения органической химии ДНК и РНК представляют собой высокомолекулярные вещества, состоящие из многократно повторяющихся звеньев – мономеров, называемых также нуклеотидами.

Известно, что они соединяются между собой, образуя цепи, способные к пространственной самоорганизации.

Такие макромолекулы ДНК часто связываются со специальными белками, имеющими особые свойства и называемыми гистонами.

Нуклеопротеидные комплексы образуют особые структуры – нуклеосомы, которые, в свою очередь, входят в состав хромосом.

Нуклеиновые кислоты могут находиться как в ядре, так и в цитоплазме клетки, присутствуя в составе некоторых ее органелл, например, митохондрий или хлоропластов.

Пространственная структура вещества наследственности

Чтобы понять функции ДНК и РНК, нужно детально разобраться с особенностями их строения. Как и белкам, нуклеиновым кислотам присущи несколько уровней организации макромолекул.

Первичная структура представлена полинуклеотидными цепями, вторичная и третичная конфигурации самоусложняются благодаря возникающему ковалентному типу связи.

Особая роль в поддержании пространственной формы молекул принадлежит водородным связям, а также вандерваальсовым силам взаимодействия. В результате образуется компактная структура ДНК, называемая суперспиралью.

Мономеры нуклеиновых кислот

Строение и функции ДНК, РНК, белков и других органических полимеров зависят как от качественного, так и от количественного состава их макромолекул. Оба вида нуклеиновых кислот состоят из структурных элементов, именуемых нуклеотидами.

Как известно из курса химии, строение вещества обязательно влияет на его функции. ДНК и РНК не являются исключением. Оказывается, что от нуклеотидного состава зависит вид самой кислоты и ее роль в клетке.

Каждый мономер содержит три части: азотистое основание, углевод и остаток ортофосфорной кислоты. Известно четыре вида азотистых оснований для ДНК: аденин, гуанин, тимин и цитозин. В молекулах РНК ими будут, соответственно, аденин, гуанин, цитозин и урацил.

Углевод представлен различными видами пентозы. В рибонуклеиновой кислоте находится рибоза, а в ДНК – ее обескислороженная форма, называемая дезоксирибозой.

Сначала мы рассмотрим строение и функции ДНК. РНК, имеющая более простую пространственную конфигурацию, будет изучена нами в следующем разделе. Итак, две полинуклеотидные нити удерживаются между собой многократно повторяющимися водородными связями, образующимися между азотистыми основаниями. В паре “аденин – тимин” присутствуют две, а в паре “гуанин – цитозин” – три водородные связи.

Консервативное соответствие пуриновых и пиримидиновых оснований было открыто Э. Чаргаффом и получило название принципа комплементарности. В отдельно взятой цепи нуклеотиды связаны между собой фосфодиэфирными связями, формирующимися между пентозой и остатком ортофосфорной кислоты рядом расположенных нуклеотидов.

Спиральный вид обеих цепей поддерживается водородными связями, возникающими между атомами водорода и кислорода, находящимися в составе нуклеотидов. Высшая – третичная структура (суперспираль) – характерна для ядерной ДНК эукариотических клеток. В таком виде она присутствует в хроматине.

[attention type=green]

Однако бактерии и ДНК-содержащие вирусы имеют дезоксирибонуклеиновую кислоту, не связанную с белками. Она представлена кольцеобразной формой и называется плазмидой.

[/attention]

Такой же вид имеет ДНК митохондрий и хлоропластов – органелл растительных и животных клеток. Далее мы выясним, чем отличаются между собой функции ДНК и РНК. Таблица, приведенная ниже, укажет нам эти различия в строении и свойствах нуклеиновых кислот.

Рибонуклеиновая кислота

Молекула РНК состоит из одной полинуклеотидной нити (исключением являются двухцепочные структуры некоторых вирусов), которая может находиться как в ядре, так и в клеточной цитоплазме. Существует несколько видов рибонуклеиновых кислот, которые разнятся между собой строением и свойствами.

Так, информационная РНК имеет наибольшую молекулярную массу. Она синтезируется в ядре клетки на одном из генов. Задача иРНК – перенести информацию о составе белка из ядра в цитоплазму.

Транспортная форма нуклеиновой кислоты присоединяет мономеры белков – аминокислоты – и доставляет их к месту биосинтеза.

Наконец, рибосомная РНК формируется в ядрышке и участвует в синтезе белка. Как видим, функции ДНК и РНК в клеточном метаболизме разнообразны и очень важны.

Они будут зависеть, прежде всего, от того, в клетках каких организмов находятся молекулы вещества наследственности.

Так, у вирусов рибонуклеиновая кислота может выступать носителем наследственной информации, тогда как в клетках эукариотических организмов эту способность имеет только дезоксирибонуклеиновая кислота.

Функции ДНК и РНК в организме

По своему значению нуклеиновые кислоты, наряду с белками, являются важнейшими органическими соединениями. Они сохраняют и передают наследственные свойства и признаки от родительской особи к потомству. Давайте определим, чем отличаются между собой функции ДНК и РНК. Таблица, представленная ниже, покажет эти различия подробнее.

ВидМесто в клеткеКонфигурацияФункция
ДНКядросуперспиральсохранение и передача наследственной информации
ДНКмитохондриихлоропластыкольцевая (плазмида)локальная передача наследственной информации
иРНКцитоплазмалинейнаяснятие информации с гена
тРНКцитоплазмавторичнаятранспорт аминокислот
рРНКядро и цитоплазмалинейнаяобразование рибосом

Каковы особенности вещества наследственности вирусов?

Нуклеиновые кислоты вирусов могут иметь вид как одно-, так и двухнитевых спиралей или колец. Согласно классификации Д.Балтимора, эти объекты микромира содержат молекулы ДНК, состоящие из одной или двух цепей. К первой группе относятся возбудители герпеса и аденовирусы, а во вторую входят, например, парвовирусы.

Функции ДНК и РНК вирусов заключаются в проникновении собственной наследственной информации в клетку, проведении реакций репликации молекул вирусной нуклеиновой кислоты и сборке белковых частиц в рибосомах клетки-хозяина. В итоге весь клеточный метаболизм оказывается полностью подчинен паразитам, которые, стремительно размножаясь, приводят клетку к гибели.

РНК-содержащие вирусы

В вирусологии принято разделение этих организмов на несколько групп. Так, к первой относятся виды, которые называются одноцепочечными (+) РНК.

У них нуклеиновая кислота выполняет такие же функции, как и информационная РНК эукариотических клеток. В другую группу входят однонитевые (-) РНК.

Сначала с их молекулами происходит транскрипция, приводящая к появлению молекул(+) РНК, а те, в свою очередь, служат матрицей для сборки вирусных белков.

[attention type=yellow]

На основании всего вышесказанного, для всех организмов, включая и вирусы, функции ДНК и РНК кратко характеризуются так: хранение наследственных признаков и свойств организма и дальнейшая передача их потомству.

[/attention]

Источник: https://FB.ru/article/302540/stroenie-i-funktsii-dnk-i-rnk-tablitsa

Днк (дезоксирибонуклеиновая кислота)

Схема строения днк и рнк

ДНК (дезоксирибонуклеиновая кислота) — это линейный органический полимер, мономерными звеньями которого являются нуклиатиды.

Вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале. Основу генетического материала организма составляет дезоксирибонуклеиновая кислота (ДНК).

ДНК большинства организмов – это длинная двухцепочечная полимерная молекула.

 Последовательность мономерных звеньев (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой.

Принцип комплементарности обеспечивает синтез новых молекул ДНК, идентичных исходным, при их удвоении (репликации).

Участок молекулы ДНК, кодирующий определенный признак, – ген.

Гены – это индивидуальные генетические элементы, имеющие строго специфичную нуклеотидную последовательность, и кодирующие определенные признаки организма. Одни из них кодируют белки,  другие — только молекулы РНК.

Информация, которая содержится в генах, кодирующих белки (структурных генах), расшифровывается в ходе двух последовательных процессов:

  • синтеза РНК (транскрипции): на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК).
  • синтеза белка (трансляции): В ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы.

Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы определяет ее структуру и функции.

Строение ДНК

ДНК – это линейный органический полимер. Его мономерные звенья – нуклеотиды, которые, в свою очередь, состоят из:

  • азотистого основания;
  • пятиуглеродного сахара (пентозы);
  • фосфатной группы (рисунок 1).

    Рисунок 1 : ДНК – строение одной цепочки нуклеотидов

При этом,  фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка,  а  органическое основание — к 1′-атому.

Основания в ДНК бывают двух типов:

  • Пуриновые: аденин ( А ) и гуанин (G);
  • Пиримидиновые: цитозин (С) и тимин (Т);(рисунок 2),

    Рисунок 2: Азотистые основания- пуриновые и пиримидиновые

Строение нуклеотидов в молекуле ДНК

В ДНК моносахарид представлен  2′-дезоксирибозой, содержащей только 1 гидроксильную группу (ОН),  а  в РНКрибозой, имеющей 2 гидроксильные группы(OH).

Нуклеотиды соединены друг с другом фосфодиэфирными связями, при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец),  а  на другом — 5′-фосфатная группа (5′-конец).

Уровни структуры ДНК

Принято выделять 3 уровня структуры ДНК:

  • первичную;
  • вторичную;
  • третичную.

Первичная структура  ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.

Вторичная структура ДНК стабилизируется  водородными связями между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек,  закрученных вправо вокруг одной оси.

Общий виток спирали- 3,4нм, расстояние между цепочками 2нм.

Третичная структура ДНК – суперсперализация ДНК.

Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов.

Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет  8 см,  а в форме суперспирали укладывается в 5 нм.

 Правило Чаргаффа

Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:

  1. У ДНК молярные доли пуриновых и пиримидиновых оснований равны: А+ G = C + Т  или (А + G)/(C + Т)=1.
  2. В ДНК количество оснований с аминогруппами (А +C) равно количеству оснований с кетогруппами (G + Т):   А +C= G + Т или (А +C)/(G + Т)= 1
  3. Правило эквивалентности, то есть : А=Т, Г=Ц; А/Т = 1;  Г/Ц=1.
  4. Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности: (Г+Ц)/(А+Т). У высших растений и животных коэффициент специфичности меньше 1, и колеблется незначительно: от 0,54 до 0,98, у микроорганизмов он больше 1.

Модель ДНК Уотсона-Крика

Б 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).

Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей (рисунок 3).

При этом аденин образует пару только с тимином,  а  гуанин — с цитозином.

Пара оснований  А—Т  стабилизируется двумя водородными связями,  а  пара G—Стремя.

Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п.н.). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н.

Сахарофосфатный остов молекулы, который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’—З’-фосфодиэфирными связями, образует «боковины винтовой лестницы»,  а  пары оснований  А—Т  и G—С — ее ступеньки (рисунок 3).

Рисунок 3: Модель ДНК Уотсона-Крика

Цепи молекулы ДНК антипараллельны: одна из них имеет направление 3’→5′, другая 5’→3′.

В соответствии с принципом комплементарности, если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′, то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′. В этом случае двухцепочечная форма будет выглядеть следующим образом:

  • 5′-TAGGCAT-3′
  • 3-ATCCGTA-5′.

В такой записи 5′-конец верхней цепи всегда располагают слева,  а  3′-конец — справа.

Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул.

Модель ДНК Уотсона—Крика полностью отвечает этим требованиям, так как:

  • согласно принципу комплементарности каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Следовательно, после одного раунда репликации образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК.
  • нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка.

Интересные факты о ДНК

  1. Одна молекула ДНК человека вмещает порядка 1,5 гигабайта информации. При этом, ДНК всех клеток человеческого организма занимают 60 млрд. терабайт, что сохраняются на 150-160 граммах ДНК. [2]
  2. Международный день ДНК отмечается 25 апреля.

    Именно в этот день в 1953 году Джеймс Уотсон и Фрэнсис Крик опубликовали в журнале Nature свою статью под названием «Молекулярная структура нуклеиновых кислот», где описали двойную спираль молекулы ДНК. [3]

Список литературы: Молекулярная биотехнология: принципы и применение, Б.

Глик, Дж. Пастернак, 2002 год
Б.Глик,
Дж. Пастернак,
Источник: Молекулярная биотехнология: принципы и применение, Б.Глик, Дж. Пастернак, 2002 год
[2] MPlast.

by – портал: “ДНК 1 клетки человека вмещает 1,5 гигабайта информации – лучший винчестер на планете” – 27 апреля 2016 года
[3] Журнал NATURE: “Molecular Structure of Nucleic Acids” – 25 апреля 1953 года
Дата в источнике: 2002 год

Источник: https://mplast.by/encyklopedia/dnk-dezoksiribonukleinovaya-kislota/

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: