Строение белковой молекулы таблица

Что такое белки — строение и функции

Строение белковой молекулы таблица

Белки играют центральную роль в организме человека, выполняя одни из самых важных функций: двигательную, защитную, биологическую, регуляторную и другие.

Без этих универсальных молекулярных машин жизнь на нашей планете и вовсе не могла бы появиться.

В данной статье мы подробно рассмотрим что такое белки, какие существуют виды, где содержатся и многое другое.

  • Что такое белок и каковы его функции
  • Строение белков
  • Структуры белков
  • Протеины и протеиды — простые и сложные белки
  • Физико-химические свойства белков
  • Значение белков для организма
  • Что относится к белковой пище
  • Заключение

Что такое белок и каковы его функции

На уроках биологии и химии довольно много времени уделяется этой важной теме. Белки (protein) являются природными гетерополимерами, состоящие из α-аминокислот. Соединяет их вместе пептидная связь. Для синтеза огромного множества белков в человеческом организме используется 20.

Состав каждого белка, синтезированного в организме, определяется геномом. Различные комбинации генетического кода позволяют создавать из стандартных аминокислот огромное множество белков, отвечающих за разнообразные функции в нашем теле.

Некоторые белки довольно сложно классифицировать исключительно по их функциям. Так как один белок часто может отвечать за выполнение нескольких задач.

Список функций белков выглядит следующим образом:

  1. Структурная – отвечает за образование цитоскелета клеток, придает форму разным тканям. Наиболее известные — это коллагены и эластин, входящие в состав межклеточного вещества. А также кератин – основной белок, формирующий ногти и волосы.
  2. Защитная функция разделяется на физическую, иммунную и химическую. За физическую защиту в основном отвечают тромбины, свертывающие кровь, и коллагены и кератин, формирующие роговые щитки, волосы, кожу. Химическую защиту от различных токсинов в организме выполняют в основном ферменты печени. Они растворяют токсины, позволяя быстрее вывести их. За иммунную защиту отвечают различные иммуноглобулины.
  3. Каталитическая функция использует ферменты. Это особые белки, позволяющие катализировать реакции, расщепляющие большие молекулы, или же наоборот их синтезировать. Ферменты позволяют ускорять все химические реакции в сотни и тысячи раз. За последнее время науке стало известно свыше 5000 различных ферментов.
  4. Регуляторная функция отвечает за управление всей жизнедеятельностью клетки. Белки из данной группы регулируют количество и активность остальных белков, а также множество процессов внутри самой клетки.
  5. Сигнальная функция выполняется гормонами и цитокинами. Эти белки являются сигнальным веществом, позволяя передавать информацию или сигналы частями организма.
  6. Транспортная – позволяет переносить различные вещества от одних органов и клеток к другим. Наиболее известный пример – это гемоглобин, транспортирующий кислород и углекислый газ.
  7. Запасная функция. Ее выполняют белки, запасающиеся в организме для экстренных случаев в качестве энергии или источника аминокислот.
  8. Рецепторная. Ее выполняют белки, реагирующие свет, физическое воздействие или химическое вещество.
  9. Моторная функция выполняется целыми группами белков. Среди них, например, актин и миозин. Они являются основными компонентами мышц и позволяют им сокращаться. Другие белки позволяют клеткам лейкоцитов передвигаться внутри организма.

Строение белков

Беки относятся к линейным полимерам. В их составе могут присутствовать несколько α-амиокислот и неаминокислотные компоненты. На первый взгляд всего 20 аминокислот – это небольшой выбор.

Но на самом деле молекула белка, состоящая всего из 5 компонентов аминокислот, может иметь свыше миллиона вариантов построения. Небольшой белок может иметь в своей цепочке сотню аминокислотных остатков.

При синтезе белка аминокислоты соединяются благодаря пептидной связи. Они соединяются разными концами, одна с помощью карбоксильной группы (-COOH), а другая аминогруппой (-NH2). При таком соединении у белка появляются два соответственных конца С и N.

Структуры белков

Структурные организации белков классифицируют на 4 уровня. Это первичная, вторичная, третичная и четвертичная структуры.

Первичная представляет собой стандартную цепочку аминокислот. Их последовательность закодирована генетически. Она обычно описывается трехбуквенными обозначениями аминокислотных остатков в цепочке.

Вторичная представляет собой упорядоченно свернутую спиралеобразно цепочку аминокислот. Она напоминает пружинку. У спирали стабильная структура, так как ее витки крепятся между собой водородными связями. Почти все СО- и NН- группы устанавливают друг с другом такие связи. Среди белков данной структуры особенно выделяются коллагены и кератин.

[attention type=yellow]

Третичная – в основном формируется благодаря гидрофильно-гидрофобным взаимодействиям. Возникающие водородные ионные и дисульфидные связи способствуют взаимодействию между радикалами аминокислот. Благодаря этому полипептидная связь укладывается в специальные глобулы. К белкам третичной структуры уже относятся множество ферментов, антител и гормонов.

[/attention]

Четвертичная – присуща сложным формам ферментов или белков, которые состоят из 2 или 3 глобул. Они связываются в молекуле как ионными, так и гидрофобными взаимодействиями. А иногда возникают электростатические взаимодействия или дисульфидные связи. Наиболее известный и изученный белок данной классификации – гемоглобин.

Протеины и протеиды — простые и сложные белки

Еще одна классификация белков это – протеины и протеиды. Первые — это простые белки, в состав которых входят исключительно остатки аминокислот. А вот в протеидах, помимо основного скелета из аминокислот, присутствуют еще не белковые группы (простетические).

В зависимости от дополнительной небелковой составляющей протеиды делят на другие группы:

  1. Липопротеины – включают в себя различные липиды. В основном данные белки выполняют транспортировку липидов.
  2. Фосфопротеины – имеют фосфорную кислоту. К таким белкам относятся вителлин и казеноген.
  3. Металлопротеины – могут иметь катионы одного и более металлов в своей структуре. Наиболее известен гемоглобин с молекулами железа.
  4. Гликопротеины – имеют в своем составе различные углеводы.
  5. Нуклеопротеины – являются главными белками, отвечающими за передачу наследственной информации.

Физико-химические свойства белков

Белки проявляют свойства амфотерности (от греч. «двойственность). Они могут в зависимости от различных факторов проявлять как кислотные, так и основные свойства.

Также белки могут быть растворимыми или не растворимыми в воде. На растворимость могут влиять как сама структура белка, так и характер растворителя, pH самого раствора или ионная сила.

Белки могут быть гидрофобными или гидрофильными. Последние в основном располагаются в ядре, цитоплазме или межклеточном веществе.

Еще одно свойство белков это денатурация. Это так называемая потеря четвертичной, третичной структур. Белки отлично приспособлены для жизни и функционирования в условиях организма, но при резком изменении внешних условий структура белка может разрушиться.

Среди таких воздействий выделяют ультразвук, высокие и низкие температуры, облучения, встряхивания, вибрации, а также действие кислот или щелочей. Денатурация может быть как частичной, так и полной, или же обратимой и необратимой.

Значение белков для организма

Как мы увидели из вышеприведенных функций и особенностей, белки имеют огромное значение для организма человека. Они придают форму клеткам и тканям организма, переносят различные элементы между органами и клетками, отвечают за восприятие окружающего мира.

Белки защищают нас от природных факторов и от воздействий вредоносных микроорганизмов. Без них в принципе невозможно как минимум прохождение химических реакций в организме и обмен веществ, так и наличие жизни как самовоспроизводящейся структуры. По истине, роль белков сложно переоценить.

Что относится к белковой пище

Белки являются одним из самых основных строительных материалов для нашего организма. Поэтому, чтобы питание снабжало организм человека нужными веществами, следует всегда иметь в рационе белковые продукты.

Богаты по содержанию белка следующие:

  • мясо;
  • рыба;
  • различные морепродукты;
  • яйца;
  • бобовые;
  • молочные продукты.

Заключение

Белок является одним из ключевых элементов жизни на нашей планете. Он отвечает за множество процессов и функций в живом организме, а недостаток белков может вызвать серьезные заболевания.

Большое разнообразие источников белка убережет ваш организм от недостатка незаменимых аминокислот и множества других ценных элементов питания. Старайтесь не исключать белковые продукты из рациона и будьте здоровы.

Источник: https://1001student.ru/biologiya/belki.html

Строение белков. Структуры белков • биология-в.рф

Строение белковой молекулы таблица
Строение белков. Структуры белков

Структуры белков: первичная, вторичная, третичная и четвертичная

Название «белки» происходит от способности многих из них при нагревании становиться белыми. Название «протеины» происходит от греческого слова «первый», что указывает на их важное значение в организме. Чем выше уровень организации живых существ, тем разнообразнее состав белков.

Белки образуются из аминокислот, которые соединяются между собой ковалентной – пептидной связью: между карбоксильной группой одной аминокислоты и аминогруппой другой. При взаимодействии двух аминокислот образуется дипептид (из остатков двух аминокислот, от греч. пептос – сваренный).

Замена, исключение или перестановка аминокислот в полипептидной цепи вызывает возникновение новых белков. Например, при замене лишь одной аминокислоты (глутамина на валин) возникает тяжелая болезнь – серповидно-клеточная анемия, когда эритроциты имеют другую форму и не могут выполнять свои основные функции (перенос кислорода).

При образовании пептидной связи отщепляется молекула воды. В зависимости от количества аминокислотных остатков выделяют:

олигопептиды  (ди-, три-, тетрапептиды и т. п.) – содержат до 20 аминокислотных остатков;

полипептиды – от 20 до 50 аминокислотных остатков;

белки – свыше 50, иногда тысячи аминокислотных остатков

По физико-химическим свойствам различают белки гидрофильные и гидрофобные.

Существуют четыре уровня организации белковой молекулы – равноценные пространственные структуры (конфигурации, конформации) белков: первичная, вторичная, третичная и четвертичная.

Первичная структура

Первичная структура белков является простейшей. Имеет вид полипептидной цепи, где аминокислоты связаны между собой прочной пептидной связью. Определяется качественным и количественным составом аминокислот и их последовательностью.

Вторичная структура

Вторичная структура образована преимущественно водородными связями, которые образовались между атомами водорода NH-группы одного завитка спирали и кислорода СО-группы другого и направлены вдоль спирали или между параллельными складками молекулы белка.

Белковая молекула частично или целиком скручена в α-спираль или образует β-складчатую структуру. Например, белки кератина образуют α-спираль. Они входят в состав копыт, рогов, волос, перьев, ногтей, когтей. β-складчатую имеют белки, которые входят в состав шелка. Извне спирали остаются аминокислотные радикалы (R-группы).

Водородные связи значительно более слабые, чем ковалентные, но при значительном их количестве образуют довольно прочную структуру.

Функционирование в виде закрученной спирали характерно для некоторых фибриллярных белков – миозин, актин, фибриноген, коллаген и т. п.

Третичная структура

Третичная структура белка. Эта структура постоянна и своеобразна для каждого белка. Она определяется размером, полярностью R-групп, формой и последовательностью аминокислотных остатков. Полипептидная спираль закручивается и укладывается определенным образом.

Формирование третичной структуры белка приводит к образованию особой конфигурации белка – глобулы (от лат. globulus – шарик). Его образование обуславливается  разными типами нековалентных взаимодействий: гидрофобные, водородные, ионные.

Между остатками аминокислоты цистеина возникают дисульфидные мостики.

Гидрофобные связи – это слабые связи между неполярными боковыми цепями, которые возникают в результате взаимного отталкивания молекул растворителя. При этом белок скручивается так, что гидрофобные боковые цепи погружены вглубь молекулы и защищают ее от взаимодействия с водой, а снаружи расположены боковые гидрофильные цепи.

Третичную структуру имеет большинство белков – глобулины, альбумины и т. п.

Четвертичная структура

Четвертичная структура белка. Образуется в результате объединения отдельных полипептидных цепей. В совокупности они составляют функциональную единицу. Типы связей разные: гидрофобные, водородные, электростатические, ионные.

Электростатические связи возникают между электроотрицательными и электроположительными радикалами аминокислотных остатков.

Для одних белков характерно глобулярное размещение субъединиц – это глобулярные белки. Глобулярные белки легко растворяются в воде или растворах солей. К глобулярным белкам принадлежит свыше 1000 известных ферментов.

К глобулярным белкам относятся некоторые гормоны, антитела, транспортные белки.

 Например, сложная молекула гемоглобина (белка эритроцита крови) является глобулярным белком и состоит из четырех макромолекул глобинов: двух α-цепей и двух β-цепей, каждая из которых соединена с гемом, содержащим железо.

[attention type=red]

Для других белков характерно объединение в спиральные структуры – это фибриллярные (от лат. fibrilla – волоконце) белки. Несколько (от 3 до 7) α–спиралей свиваются вместе, подобно волокнам в кабеле. Фибриллярные белки нерастворимы в воде.

[/attention]

Белки делят на простые и сложные.

Простые (протеины)

Состоят только из остатков аминокислот. К простым белкам относят глобулины, альбумины, глутелины, проламины, протамины, пистоны. Альбумины (например, альбумин сыворотки крови) растворимы в воде, глобулины (например, антитела) нерастворимы в воде, но растворимы в водных растворах некоторых солей (хлорид натрия и т. п.).

Сложные (протеиды)

Включают в состав, кроме остатков аминокислот, соединения другой природы, которые называются простетическою группой.

Например, металлопротеиды – это белки, содержащие негеминовое железо или связанные атомами металлов (большинство ферментов), нуклеопротеиды – белки, соединенные с нуклеиновыми кислотами (хромосомы и т. п.), фосфопротеиды –белки, в состав которых входят остатки фосфорной кислоты (белки яичного желтка и т. п.

), гликопротеиды –белки в соединении с углеводами (некоторые гормоны, антитела и т. п.), хромопротеиды – белки, содержащий пигменты (миоглобин и т. п.), липопротеиды – белки, содержащие липиды (входят в состав мембран).

Молекулярный уровеньУровни организации живого

Источник: https://xn----9sbecybtxb6o.xn--p1ai/obshchaya-biologiya/stroenie-belkov-struktury-belkov/

строение и функции белка или чего не знала Анжелина Джоли

Строение белковой молекулы таблица

Хотите узнать о строении и функции белка? Читайте далее, и вы узнаете: чем занимаются белки в организме человека, что такое первичная, вторичная, третичная и даже четвертичная структура белка, как классифицируют белки и какие последствия белкового голодания. Также можно посмотреть короткое видео о функциях белков.

Зачем он нужен, этот белок? Может, без него обойдемся?

Нет, не обойдемся. Бородатый основатель диалектического материализма Фридрих Энгельс сказал: жизнь – есть способ существования белковых тел. Иначе говоря, белок – это жизнь, нет белка – увы и ах. В норме белок составляет 50%, т.е. половину от сухой массы клетки, а от сухой массы тела человека они составляют от 45%.

Особенности строения белков позволяют им проявлять различные свойства, чем обусловлены их разнообразные биологические функции

Белки иначе называют протеинами, это одно и то же.

Функции белка в организме

  1. Белки или протеины являются теми кирпичиками, из которых сложен наш организм. Они являются структурными элементами клеточных мембран (липопротеины, гликопротеины), и внеклеточных структур. Коллаген образует сухожилия, он же отвечает за упругость кожи, кератин образует волосы и ногти.
  2. Транспорт необходимых элементов по организму.

    Гемоглобин переносит кислород от легких ко всем органам и тканям, а от них – уносит углекислый газ, белок альбумин переносит жирные кислоты, особые белки таскают холестерин. В составе клеточных мембран имеются белки, которые обеспечивают перенос некоторых веществ и ионов из клетки во внеклеточное пространство и обратно.

  3. Гормоны – особые вещества, регулирующие процессы обмена веществ – имеют белковую природу. Например, гормон инсулин загоняет сахар из плазмы крови в клетки
  4. Защита организма от чужеродных агентов. Гамма-глобулины обезвреживают микробов, интерфероны подавляют размножение вирусов. Фибрин останавливает кровотечения.
  5. Обеспечение сокращения двигательной мускулатуры и других сокращающихся тканей. Актин и миозин входят в состав мышц тела, тропонин, тропомиозин – мышц сердца.
  6. Протеины принимают сигналы из внешней среды и передают команды в клетку.

    Под воздействием факторов внешней среды сигнальные белки изменяют свою третичную структуру, что в свою очередь запускает цепь биохимических процессов. Так родопсин реагирует на свет, преобразуя световую энергию в электрическую, которая передается по нервным клеткам в головной мозг, где формируется зрительная картинка.

  7. Белки являются ферментами – катализаторами, благодаря которым возможно протекание биохимических реакций при низких температурах (370С).
  8. Регуляторная функция: протеины – регуляторы включают и выключают гены клетки, тем самым подавляя либо активируя биохимические процессы.
  9. Протеины, как правило, не накапливаются в организме, за исключением альбумина яйца и казеина молока. Лишних белков в организме нет. Однако, они могут соединяться с другими веществами и микроэлементами, препятствуя их выведению из организма.

    Так ферритин образует комплекс с железом, высвобождающимся при распаде гемоглобина, и вновь включает его в биологические процессы.

  10. Энергетическая функция. При распаде 1 г. белка выделяется 4 ккал (17,6 кДж). В качестве источника энергии белки используются при истощении других, нормативных источников – углеводов и жиров. Перефразируя Д.И.Менделеева, можно сказать, что топить белками, это все равно что топить ассигнациями, настолько они ценны для организма.

Строение молекулы белка

Молекула белка — это длинная цепочка, т.е. полимер, состоящая из мономеров – аминокислот. Почему аминокислот? Потому что у каждой молекулы есть хвост органической кислоты C-O-OH и аминогруппа NH2. В цепочке-полимере каждый мономер – аминокислота присоединяет свой кислотный остаток к аминогруппе другого мономера, получается прочная связь, именуемая пептидной.

Понятия белок и пептид близки, но не равнозначны. Обычно пептидами называют некоторую последовательность аминокислотных остатков. Выделяют олигопептиды – короткие цепочки в 10-15 аминокислот и полипептиды – длинные цепочки аминокислотных последовательностей. Белок – это полипептид, имеющий особую форму пространственной организации.

Нанизывая аминокислоты, как бусинки в ожерелке, формируется первичная структура белка, т.е. последовательность аминокислотных остатков.

В пространстве белок существует не в виде вытянутой нитки, а завивается спиралью, т.е. формирует вторичную структуру.

Спиралька сворачивается в шарик – глобулу, это уже третичная структура белка.

Некоторые белки (не все) имеют четвертичную структуру, объединяя в своем составе несколько молекул, каждая со своей первичной, вторичной и третичной структурой.

Зачем это надо знать? Потому что переваривание и усвоение белка напрямую зависит от его структуры: чем  плотнее упакован белок в составе пищевого продукта, тем тяжелее он поддается перевариванию, тем больше энергии надо затратить на его усвоение.

Распад  связей в молекуле белка называется денатурацией. Денатурация может быть обратимой, когда белок восстанавливает структуру, и необратимой. Необратимой денатурации белки подвергаются в том числе при воздействии высокой температуры – для человека это свыше 420С, именно поэтому  лихорадка опасна для жизни.

Мы подвергаем белки контролируемой денатурации в процессе приготовления пищи, когда варим мясо или рыбу, кипятим молоко, жарим или варим яйца, варим каши и печем хлеб.

[attention type=green]

При мягком температурном воздействии, белки с распавшимися связями становятся более доступными для пищеварительных ферментов и лучше усваиваются организмом.

[/attention]

При длительном и жестком температурном воздействии – жарке на углях, длительной варке – происходит вторичная денатурация белка с образованием трудноперевариваемых соединений.

Аминокислоты

Существует более двух сотен различных аминокислот, но в составе  белков — полимеров постоянно встречаются лишь двадцать. Эти 20 «магических» аминокислот делятся на две неравные группы: заменимые, т.е. те, которые могут вырабатываться самим организмом, и незаменимые (эссенциальные), они организмом человека не вырабатываются, и мы должны в обязательном порядке получать их с пищей.

К заменимым аминокислотам относятся: Аланин, Аргинин, Аспарагиновая кислота, Глицин, Глутаминовая кислота, Пролин,  Серин, Тирозин, Цистин.

Незаменимые аминокислоты: Валин, Изолейцин, Лейцин, Лизин, Метионин, Треонин, Триптофан, Фенилаланин

Для детей  незаменимыми аминокислотами являются Аргинин и Гистидин.

Классификация белков

По содержанию аминокислот белки делятся на полноценные и неполноценные.

Полноценный белок содержит в своем составе все необходимые аминокислоты, а неполноценный белок, соответственно, каких-то аминокислот не содержит.

Для строительства всех белков организма  важно не только наличие всех аминокислот, но и их пропорции в пищевом продукте. Пища, наиболее близкая по аминокислотному составу белкам тела человека, является оптимальной.

Если какой-то одной аминокислоты не хватает, другие аминокислоты не могут использоваться организмом, более того, для того, чтобы возместить нехватку, начнут распадаться собственные белки, в первую очередь белки – ферменты, участвующие в процессах биосинтеза, и мышечные белки.

В условиях недостатка той или иной незаменимой аминокислоты, другие аминокислоты оказываются избыточными, хотя этот избыток относительный. Распадающиеся мышечные белки образуют высокотоксичные продукты обмена и усиленно выводятся организмом, создавая отрицательных азотистый баланс.

Человек начинает хиреть, хотя может искренне считать, что с питанием у него все в порядке.

По своему происхождению белки делятся на животные и растительные.

К животным белкам относятся белки яиц, молока и молочных продуктов, рыбы и морепродуктов, мясо животных и птиц.

К растительным белкам относятся белки зерновых, бобовых, орехов и грибов.

Продукты питания считаются белковыми, если они содержат не меньше 15% белка.

Все животные белки являются полноценными, т.е. содержат полный набор аминокислот. Большинство растительных белков являются неполноценными.

Последствия белкового голодания

При недостаточном поступлении белка с пищей в организме развиваются дегенеративные процессы, связанные с невозможностью выполнять необходимые функции. В первую очередь страдает иммунитет.

Человек становится предрасположен к вирусным и бактериальным инфекциям, болезни приобретают затяжной, хронический характер. Начинают выпадать волосы, кожа становится дряблой, морщинистой. Страдает волевая сфера, человека охватывает апатия, полное нежелание чем-либо заниматься, присоединяется депрессия.

[attention type=yellow]

Уменьшается мышечная масса, замедляется обмен веществ. Начинаются проблемы с пищеварением, появляется т.н. «синдром раздраженного кишечника», когда прием пищи сопровождается метеоризмом, поносы сменяются запорами и наоборот. Угнетается детородная функция, у женщин прекращаются месячные.

[/attention]

В тяжелых случаях начинаются структурные изменения в органах и тканях, видимое истощение. Белковое голодание детей приводит к умственной отсталости.

Тяжелое белковое голодание в наше время в цивилизованных странах, куда мы относим и нашу страну, если исключить  заболевания, типа туберкулеза или онкологии, встречаются у людей, практикующих безумные голодные диеты в маниакальном стремлении похудеть.

Последнее сообщение касалось Анджелины Джоли, ее госпитализировали с весом 35 кг – такими застали советские освободители узников нацистских конц.лагерей. Вряд ли живые скелеты являли собой образцы красоты.

Однако недостаток белка – не такое уж редкое состояние, объясняющееся нездоровой структурой питания, сложившейся вследствие относительной дороговизны белковых продуктов.

В стремлении сэкономить люди переходят на углеводно-жировую диету с потреблением неполноценного растительного белка. Свою лепту вносят  полуфабрикаты, изготовленные из  суррогатов, и белковыми продуктами не являющимися.

Так человек, покупающий готовые котлеты, колбасу, сосиски может искренне считать, что потребляет достаточно белка. Не заблуждайтесь.

В следующей статье вы узнаете, сколько и какого белка необходимо человеку, чтобы оставаться здоровым.

Оставляйте комментарии, делитесь информацией в социальных сетях. Галина Баева.

Источник: https://zaryad-zhizni.ru/stroenie-i-funktsii-belka/

2.3.3. Органические вещества клетки. Белки

Строение белковой молекулы таблица

Белки – это биологические гетерополимеры, мономерами которых являются аминокислоты. Белки синтезируются в живых организмах и выполняют в них определенные функции.
В состав белков входят атомы углерода, кислорода, водорода, азота и иногда серы.

Мономеры белков – аминокислоты – вещества, имеющие в своем составе неизменяемые части аминогруппу NH2 и карбоксильную группу СООН и изменяемую часть – радикал. Именно радикалами аминокислоты отличаются друг от друга.

Аминокислоты обладают свойствами кислоты и основания (они амфотерны), поэтому могут соединяться друг с другом. Их количество в одной молекуле может достигать нескольких сотен.

Чередование разных аминокислот в разной последовательности позволяет получать огромное количество различных по структуре и функциям белков.

В белках встречается 20 видов различных аминокислот, некоторые из которых животные синтезировать не могут. Они получают их от растений, которые могут синтезировать все аминокислоты. Именно до аминокислот расщепляются белки в пищеварительных трактах животных. Из этих аминокислот, поступающих в клетки организма, строятся его новые белки.

Структура белковой молекулы – ее аминокислотный состав, последовательность мономеров и степень скрученности молекулы, которая должна умещаться в различных отделах и органоидах клетки, причем не одна, а вместе с огромным количеством других молекул.

1.Последовательность аминокислот в молекуле белка образует его первичную структуру. Она зависит от последовательности нуклеотидов в участке молекулы ДНК (гене), кодирующем данный белок.

Соседние аминокислоты связаны пептидными связями, возникающими между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты.
2.

Длинная молекула белка сворачивается и приобретает сначала вид спирали – вторичная структура белковой молекулы. Между СО и NH – группами аминокислотных остатков  соседних витков спирали, возникают водородные связи, удерживающие цепь.
3.

[attention type=red]

Молекула белка сложной конфигурации в виде глобулы (шарика), приобретает третичную структуру. Прочность этой структуры обеспечивается гидрофобными, водородными, ионными и дисульфидными S-S связями.
4.

[/attention]

Некоторые белки имеют четвертичную структуру, образованную несколькими полипептидными цепями (третичными структурами). Четвертичная структура так же удерживается слабыми нековалентными связями – ионными, водородными, гидрофобными.

Однако прочность этих связей невелика и структура может быть легко нарушена. При нагревании или обработке некоторыми химическими веществами белок подвергается денатурации и теряет свою биологическую активность.

Нарушение четвертичной, третичной и вторичной структур обратимо. Разрушение первичной структуры необратимо.
Белки имеют видовую специфичность: каждый вид организмов обладает белками, не встречающимися у других видов.

Функции белков

Каталитическая  (ферментативная) – белки ускоряют все биохимические процессы, идущие в клетке: расщепление питательных веществ в пищеварительном тракте, участвуют в реакциях матричного синтеза. Каждый фермент ускоряет одну и только одну реакцию (как в прямом, так и в обратном направлении).

Скорость ферментативных реакций зависит от температуры среды, уровня ее рН, а также от концентраций реагирующих веществ и концентрации фермента.
Транспортная  – белки обеспечивают активный транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа, транспорт жирных кислот.

Защитная – антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь.
Структурная  – одна из основных функций белков. Белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия.

Сократительная – обеспечивается сократительными белками – актином и миозином.
Сигнальная  – белковые молекулы могут принимать сигналы и служить их переносчиками в организме (гормонами). Следует помнить, что не все гормоны являются белками.

Энергетическая  – при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры.

Часть А

А1. Последовательность аминокислот в молекуле белка зависит от:1) структуры гена2) внешней среды3) их случайного сочетания

4) их строения

А2. Человек получает незаменимые аминокислоты путем1) их синтеза в клетках   3) приема лекарств2) поступления с пищей  

4) приема витаминов

А3. При понижении температуры активность ферментов1) заметно повышается          2) заметно понижается3) остается стабильной         

4) периодически изменяется

А4. В защите организма от кровопотерь участвует1) гемоглобин 2) коллаген 3) фибрин

4) миозин

А5. В каком из указанных процессов белки не участвуют?1) обмен веществ                    2) кодирование наследственной информации3) ферментативный катализ  

4) транспорт веществ

А6. Укажите пример пептидной связи:

Часть В

В1. Выберите функции, характерные для белков1) каталитическая 2) кроветворная   3) защитная 4) транспортная    5) рефлекторная  

6) фотосинтетическая

В2.
Установите соответствие между структурой белковой молекулы и ее особенностями

ОСОБЕННОСТИ СТРУКТУРЫСТРУКТУРА БЕЛКОВОЙ МОЛЕКУЛЫ
А) имеет форму глобулыБ) удерживается пептидными связямиВ) удерживается пептидными, водородными, дисульфидными связямиГ) определяется последовательностью нуклеотидов в генеД) определяет биологическую активность белкаЕ) не спирализована1) первичная2) третичная

Часть  С

С1. Почему продукты хранят в холодильнике?
С2. Почему продукты, подвергшиеся тепловой обработке, хранятся дольше?
СЗ. Объясните понятие «специфичность» белка, и какое биологическое значение имеет специфичность?
С4.

Прочитайте текст, укажите номера предложений, в которых допущены ошибки и объясните их. 1) Большая часть химических реакций в организме катализируется ферментами. 2) Каждый фермент может катализировать множество типов реакций.

3) У фермента есть активный центр, геометрическая форма которого изменяется в зависимости от вещества, с которым фермент взаимодействует. 4) Примером действия фермента может быть разложение мочевины уреазой. 5) Мочевина разлагается на двуокись углерода и аммиак, которым пахнет кошачий лоток с песком.

6) За одну секунду уреаза расщепляет до 30000 молекул мочевины, в обычных условиях на это потребовалось бы около 3 млн. лет.

Источник: https://biology100.ru/index.php/materialy-dlya-podgotovki/kletka-kak-biologicheskaya-sistema/2-3-3-organicheskie-veshchestva-kletki-belki

Белки

Строение белковой молекулы таблица

Белки-это высокомолекулярные (молеку­лярная масса варьируется от 5-10 тыс. до 1 млн и более) природные полимеры, молекулы которых построены из остатков аминокислот, соединенных амидной (пептидной) связью.

Белки также называют протеинами (греч. «протос» — первый, важный). Число остатков амино­кислот в молекуле белка очень сильно колеблется и иногда достигает несколь­ких тысяч. Каждый белок об­ладает своей присущей ему последовательностью распо­ложения аминокислотных остатков.

Белки выполняют разнообразные биологичес­кие функции: каталитические (ферменты), регуля­торные (гормоны), структурные (коллаген, фибро­ин), двигательные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуноглобули­ны, интерферон), запасные (казеин, альбумин, глиадин) и другие.

Белки — основа биомембран, важнейшей состав­ной части клетки и клеточных компонентов. Они играют ключевую роль в жиз­ни клетки, составляя как бы материальную основу ее хи­мической деятельности.

Исключительное свойство белка — самоорганизация структуры, т. е. его способ­ность самопроизвольно соз­давать определенную, свой­ственную только данному белку пространственную структуру. По существу, вся деятельность организма (развитие, движение, выполнение им различных функций и многое дру­гое) связана с белковыми веществами. Без белков невозможно представить себе жизнь.

Белки — важнейшая составная часть пищи че­ловека и животных, поставщик необходимых ами­нокислот.

Классификация белков

Существует несколько классификаций белков:

  1. По степени сложности (простые и сложные).
  2. По форме молекул (глобулярные и фибрилляр­ные белки).
  3. По растворимости в отдельных растворителях (водорастворимые, растворимые в разбавлен­ных солевых растворах— альбумины, спирто­растворимые — проламины, растворимые в раз­бавленных щелочах и кислотах — глутелины).
  4. По выполняемым функциям (например, запас­ные белки, скелетные и т. п.).

Свойства белков

Белки — амфотерные электролиты. При опреде­ленном значении pH среды (оно называется изоэлектрической точкой) число положительных и от­рицательных зарядов в молекуле белка одинаково. Это одно из основных свойств белка.

Белки в этой точке электронейтральны, а их растворимость в во­де наименьшая.

Способность белков снижать рас­творимость при достижении электронейтральности их молекул используется для выделения из раство­ров, например, в технологии получения белковых продуктов.

Гидратация. Процесс гидратации означает свя­зывание белками воды, при этом они проявля­ют гидрофильные свойства: набухают, их масса и объ­ем увеличиваются. Набуха­ние отдельных белков за­висит исключительно от их строения.

Имеющиеся в со­ставе и расположенные на поверхности белковой ма­кромолекулы гидрофильные амидные (—СО—NH—, пеп­тидная связь), аминные (—NH2) и карбоксильные (—СООН) группы притягивают к себе молекулы воды, строго ориентируя их на поверхности моле­кулы.

Окружающая белковые глобулы гидратная (водная) оболочка препятствует агрегации и осаж­дению, а следовательно, способствует устойчиво­сти растворов белка. В изоэлектрической точке белки обладают наименьшей способностью свя­зывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты.

Агрега­ция белковых молекул происходит и при их обе­звоживании с помощью некоторых органических растворителей, например, этилового спирта. Это приводит к выпадению белков в осадок. При из­менении pH среды макромолекула белка стано­вится заряженной, и его гидратационная способ­ность меняется.

При ограниченном набухании концентрирован­ные белковые растворы образуют сложные систе­мы, называемые студнями.

Студни не текучи, упруги, обладают пластичностью, определенной механической прочностью, способны сохра­нять свою форму. Глобуляр­ные белки могут полностью гидратироваться, растворяться в воде (например, белки молока), образуя растворы с невысокой кон­центрацией. Гидрофильные свойства белков, т. е.

[attention type=green]

их способность набухать, образовывать студни, стабилизировать суспензии, эмульсии и пены, имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, по­строенным в основном из молекул белка, является цитоплазма — сырая клейковина, выделенная из пшеничного теста; она содержит до 65 % воды.

[/attention]

Различная гидрофильность клейковинных бел­ков — один из признаков, характеризующих ка­чество зерна пшеницы и получаемой из него муки (так называемые сильные и слабые пшеницы). Ги­дрофильность белков зерна и муки играет боль­шую роль при хранении и переработке зерна, в хлебопечении.

Тесто, которое получают в хлебо­пекарном производстве, представляет собой набух­ший в воде белок, концентрированный студень, содержащий зерна крахмала.

Денатурация белков. При денатурации под вли­янием внешних факторов (температуры, механиче­ского воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третич­ной и четвертичной структур белковой макромолекулы, т. е. ее нативной простран­ственной структуры.

Первич­ная структура, а следователь­но, и химический состав белка не меняются. Изменяются физические свой­ства: снижается растворимость, способность к ги­дратации, теряется биологическая активность. Меняется форма белковой макромолекулы, проис­ходит агрегирование.

В то же время увеличивает­ся активность некоторых химических групп, об­легчается воздействие на белки протеолитических ферментов, а следовательно, он легче гидролизу­ется.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков, степень которой зависит от температуры, продол­жительности нагрева и влажности. Это необходи­мо помнить при разработке режимов термообра­ботки пищевого сырья, полуфабрикатов, а иногда и готовых продуктов.

Особую роль процессы те­пловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хлеба, получении макаронных изделий. Денатура­ция белков может вызываться и механическим воздействием (давлением, растиранием, встряхи­ванием, ультразвуком).

Наконец, к денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти при­емы широко используются в пищевой и биотех­нологии.

Пенообразование. Под процессом пенообразования понимают способность белков образовывать высококонцентрированные системы «жидкость — газ», называемые пенами.

[attention type=yellow]

Устой­чивость пены, в которой бе­лок является пенообразовате­лем, зависит не только от его природы и от концентрации, но и от температуры.

[/attention]

Белки в качестве пенообразо­вателей широко используются в кондитерской про­мышленности (пастила, зефир, суфле). Структуру пены имеет хлеб, а это влияет на его вкусовые ка­чества.

Молекулы белков под влиянием ряда факторов могут разрушаться или вступать во взаимодействие с другими веществами с образованием новых про­дуктов. Для пищевой промышленности можно вы­делить два важных процесса:

1)      гидролиз белков под действием ферментов;

2)      взаимодействие аминогрупп белков или амино­кислот с карбонильными группами восстанавли­вающих сахаров.

Под влиянием ферментов протеаз, катализиру­ющих гидролитическое расщепление белков, по­следние распадаются на более простые продукты (поли- и дипептиды) и в конечном итоге на ами­нокислоты. Скорость гидролиза белка зависит от его состава, молекулярной структуры, активности фермента и условий.

Гидролиз белков. Реакцию гидролиза с образо­ванием аминокислот в общем виде можно записать так:

Горение. Белки горят с образованием азота, углекислого газа и воды, а также некоторых дру­гих веществ. Горение сопровождается характер­ным запахом жженых перьев.

Цветные реакции на белки. Для качественного определения белка используют следующие реакции:

1)  ксантопротеиновую, при которой происходит взаимодействие ароматических и гетероатомных циклов в молекуле белка с концентриро­ванной азотной кислотой, сопровождающееся появлением желтой окраски.

2)  биуретовую, при которой происходит взаимо­действие слабощелочных растворов белков с раствором сульфата меди (II) с образованием комплексных соединений между ионами Сu2+ и полипептидами. Реакция сопровождается по­явлением фиолетово-синей окраски.

Источник: http://himege.ru/belki/

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: