Строение ионов

Электронная конфигурация атомов и ионов

Строение ионов

1001student.ru > Химия > Электронная конфигурация атомов и ионов

В химии есть очень увлекательный, но сложный раздел – электронная конфигурация атомов и ионов.

Молекулу любого из элементов таблицы Менделеева можно изучить с точки зрения как физики, так и химии.

Дивный молекулярный мир на атомном уровне отличается от привычного. Разберем подробно, как образуется электронная формула элементов.

  • Строение «электронных» оболочек атомов
  • Распределение электронных зарядов по уровням
  • Электронные формулы химических элементов
  • Заключение

Строение «электронных» оболочек атомов

Для лучшего понимания электронных окружающих ядро оболочек, нужно знать об ионе – частице, в основе которой, кроме электронов, присутствуют так называемые протоны.

Если число протонов больше числа электронов, то такой атом называется катионом (положительный заряд). В противном случае атом называется анионом (заряд отрицательный).

Каждый из электронов занимает свой собственный уровень относительно ядра.

Конфигурация электронов для отдельно взятого атома может строиться в порядке атомных чисел. В качестве первоначального элемента выбирается водород, а далее продолжается добавление одного протона к ядру согласно с подсхемой и местом в периодической таблице, пока не опишутся все химические элементы.

[attention type=yellow]

Такая процедура называется принципом Auau (Ауфбау). Название принципа происходит от немецкого слова и переводится «построить».

[/attention]

Можно сделать вывод, что появление ионов связано с моментом, когда атомы получают или теряют заряды. Катион (положительно заряженный ион) образуется, когда один или несколько зарядов удаляются из «родительского атома».

Распределение электронных зарядов по уровням

Как уже говорилось выше, молекула любого элемента периодической таблицы – это своеобразный микрокосмос, где в разные стороны (спины) двигаются заряженные частицы (лептон). По-английски spin означает «вращение». Их полуцелые «спины» были описаны Вольфгангом Паули в 1925 году.

Всего принципов построения графических распределительных схем существует три:

  1. Принцип ограничений, который сформирован швейцарским физиком В. Паули. На одном электронном уровне ядра может быть два лептона с разным направлением вращения (если один вращается против часов стрелки, то другой — по часовой). Опыты в адронном коллайдере доказали этот факт.
  2. Второй строительный принцип говорит, что лептоны стремятся занять уровни по мере возрастания энергетического запаса.
  3. Третий гласит, что любой электрон «любит» только себя и плохо переносит «соседей» по орбитали. Иными словами, сначала электроны занимают свободные клетки (в графическом исполнении формулы), а уже по второму кругу занимают свободные места.

Теперь рассмотрим состав «квартир» для лептонов. В зависимости от уровня и энергии, орбитальные места можно разделить на четыре формы:

  1. Эс (s) имеет форму круга и способен на одном уровне вместить только два заряда ядра.
  2. Пи (p) готов предоставить три «места» для шести лептонов.
  3. Де (d) предоставляет пять «мест» – 10 заряженных частиц.
  4.  Эф (f) самый щедрый на «места», их число равно семи – соответственно 14 парных частиц.

Электронные формулы химических элементов

Здесь приводится таблица-подсказка для некоторых химических элементов.

Теперь, руководствуясь данными таблицы, разберем электронные записи элементов на примере «аргона» (Ar).

В таблице Менделеева его номер — восемнадцать. Руководствуясь описанным выше, высчитываем количество частиц (всего их 18).

Ещё до построения электронно-графической формулы Аргона, вспомним, как формируются орбитали и строятся ячейки:

Начинаем распределять электроны Ar:

  1. a) поскольку аргон находится в третьем периоде, то у него три подуровня. Смотрим в учебник химии и находим, что это p-элемент;
  2. b) запишем формулу: 1 s, 2 s, 2 p, 3 s, 3 p;
  3. c) теперь рисуем орбитальные ячейки и заполняем их.

Графическое изображение формулы аргона

Важно знать: непарные заряды во внешних орбиталях, называемые валентными зарядами, отвечают за большинство химических и физических проявлений элементов.

Чтобы немного отстранится от научных теорий, стоит пофантазировать. Представьте атомное ядро и окружающие его заряды вселенной. Ядро – это солнце, а заряды — планеты. Формула наглядно описывает положение подобных «планет» в космосе (атомного вещества). Чтобы перейти с одного уровня на другой, потребуется большая энергия.

https://www.youtube.com/watch?v=NWwRBVsiI5I

В квантовой физике некоторые специалисты выдвинули теорию о том, что при вмешательстве в структуру атома можно сделать объект невидимым. Ведь если подумать, то фотон (мельчайшая частица света) может не вступать в связь с электронами атома и, не встречая сопротивления, преодолевать объект.

Впечатляет? Химическая формула элемента очень важна для физики. Благодаря труду Менделееву и его таблице, нам стали доступны современные технологии. Химические формулы и эксперименты скучны и сложны, хочется верить, что эта статья сделала их более понятными.

Источник: https://1001student.ru/himiya/ehlektronnaya-formula-ehlementa.html

Строение веществ

Строение ионов

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества. По типу связи различают вещества молекулярного и немолекулярного строения.

Молекулярное строение веществ

Это вещества, состоящие из молекул.

Связи между молекулами в таких веществах очень слабые, намного слабее, чем между атомами внутри молекулы, и уже при сравнительно низких температурах они разрываются — вещество превращается в жидкость и далее в газ (возгонка йода).

Температуры плавления и кипения веществ, состоящих из молекул, повышаются с увеличением молекулярной массы. К молекулярным веществам относятся вещества с атомной структурой (С, Si, Li, Na, К, Си, Fe, W), среди них есть металлы и неметаллы.

Немолекулярное строение веществ

К веществам немолекулярного строения относятся ионные соединения. Таким строением обладает большинство соединений металлов с неметаллами: все соли (NaCl, K2S04), некоторые гидриды (LiH) и оксиды (CaO, MgO, FeO), основания (NaOH, КОН). Ионные (немолекулярные) вещества имеют высокие температуры плавления и кипения.

Твердые вещества: кристаллические и аморфные 

Аморфные вещества не имеют четкой температуры плавления — при нагревании они постепенно размягчаются и переходят в текучее состояние. В аморфном состоянии, например, находятся пластилин и различные смолы.

Кристаллические вещества характеризуются правильным расположением тех частиц, из которых они состоят: атомов, молекул и ионов — в строго определенных точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решеткой. Точки, в которых размещены частицы кристалла, называют узлами решетки.

В зависимости от типа частиц, расположенных в узлах кристаллической решетки, и характера связи между ними, различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Ионные кристаллические решетки

Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы Na+, Сl—, так и сложные S042-, ОН—.

Следовательно, ионными кристаллическими решетками обладают соли, некоторые оксиды и гидроксиды металлов.

Например, кристалл хлорида натрия построен из чередующихся положительных ионов Na+ и отрицательных Сl—, образующих решетку в форме куба.

Ионная кристаллическая решетка поваренной соли

Связи между ионами в таком кристалле очень устойчивы. Поэтому вещества с ионной решеткой отличаются сравнительно высокой твердостью и прочностью, они тугоплавки и нелетучи.

Атомные кристаллические решетки

Атомными называют кристаллические решетки, в узлах которых находятся отдельные атомы. В таких решетках атомы соединены между собой очень прочными ковалентными связями. Примером веществ с таким типом кристаллических решеток может служить алмаз — одно из аллотропных видоизменений углерода.

Атомная кристаллическая решетка алмаза

Большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (например, у алмаза она свыше 3500 °С), они прочны и тверды, практически нерастворимы.

Молекулярные кристаллические решетки

Молекулярными называют кристаллические решетки, в узлах которых располагаются молекулы.

Молекулярная кристаллическая решетка йода

Химические связи в этих молекулах могут быть и полярными (НСl, Н2O), и неполярными (N2, О2).

Несмотря на то, что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения.

Поэтому вещества с молекулярными кристаллическими решетками имеют малую твердость, низкие температуры плавления, летучи. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар).

Металлические кристаллические решетки

Вещества с металлической связью имеют металлические кристаллические решетки.

Металлическая кристаллическая решетка

В узлах таких решеток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны «в общее пользование»). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, характерный металлический блеск.

Источник: http://himege.ru/stroenie-veshhestv/

Заключение

Чтобы немного отстранится от научных теорий, стоит пофантазировать. Представьте атомное ядро и окружающие его заряды вселенной. Ядро – это солнце, а заряды планеты. Формула наглядно описывает положение подобных «планет» в космосе (атомного вещества). Чтобы перейти с одного уровня на другой, потребуется большая энергия.

https://www.youtube.com/watch?v=NWwRBVsiI5I

В квантовой физике некоторые специалисты выдвинули теорию о том, что при вмешательстве в структуру атома можно сделать объект невидимым. Ведь если подумать, то фотон (мельчайшая частица света) может не вступать в связь с электронами атома и, не встречая сопротивления, преодолевать объект.

Впечатляет? Химическая формула элемента очень важна для физики. Благодаря труду Менделееву и его таблице, нам стали доступны современные технологии. Химические формулы и эксперименты скучны и сложны, хочется верить, что эта статья сделала их более понятными.

Источник: https://tvercult.ru/nauka/elektronnaya-konfiguratsiya-atomov-i-ionov

Ион

Строение ионов

Ион – это заряженная частица, образованная из молекулы или атома путём потери или приобретения одного электрона. Отсюда следует, что в ионе количество протонов не равно количеству электронов. После изучения статьи Вы узнаете, какими бывают заряженные частицы, что такое ионы, катионы и анионы, также Вы сможете по номеру элемента узнать, каким зарядом он может обладать.

Число электронов в ионе

Количество электронов в нейтральном атоме равно количеству протонов в ядре, например, у хрома (24Cr) 24 протона, соответствено, вокруг ядра вращается 24 электрона. Как было рассказано в статье “электронная конфигурация атома”, каждый электрон двигается по некой орбитали, то есть обладает заданным количеством энергии.

Если ион образован из-за потери электрона, то заряд иона становится положительным (электрон имеет отрицательный заряд), схема для запоминания:

24Cr – e- = 24Cr + e+ = 24Cr+
24Cr – 3e- = 24Cr + 3e+ = 24Cr3+

Аналогично при присоединении электрона:

24Cr + e- = 24Cr – e+ = 24Cr-
24Cr + 3e- = 24Cr – 3e+ = 24Cr3-

Энергия ионизации

Если электрону сообщить достаточное количество энергии, то электрон “оторвётся” от атома. Чем ближе электрон к ядру – тем сложнее его отрывать, а значит, больше энергии необходимо передать. Энергия, необходимая для отрыва электрона, называется энергией ионизации или ионизационный потенциал (I). Значения I затабулированы и могут быть найдены в различных справочниках.

#ЭлементНазваниекДж/моль
1HВодород1312
2HeГелий2373
3LiЛитий520
4BeБериллий899.5
5BБор801
6CУглерод1086
7NАзот1402
8OКислород1314
9FФтор1681
10NeНеон2080.7
11NaНатрий495
12MgМагний738
13AlАлюминий578
14SiКремний787
15PФосфор1012
16SСера1000
17ClХлор1251
18ArАргон1520.6
19KКалий418.8
20CaКальций590
21ScСкандий633.1
22TiТитан658.8
23VВанадий650.9
24CrХром652.9
25MnМарганец717.3
26FeЖелезо762.5
27CoКобальт760.4
28NiНикель737.1
29CuМедь745.5
30ZnЦинк906.4
31GaГаллий578.8
32GeГерманий762
33AsМышьяк947
34SeСелен941
35BrБром1142
36KrКриптон1350.8
37RbРубидий403
38SrСтронций549
39YИттрий600
40ZrЦирконий640.1
41NbНиобий652.1
42MoМолибден684.3
43TcТехнеций702
44RuРутений710.2
45RhРодий719.7
46PdПалладий804.4
47AgСеребро731
48CdКадмий867.8
49InИндий558.3
50SnОлово709
51SbСурьма834
52TeТеллур869
53IИод1008
54XeКсенон1170.4
55CsЦезий375.7
56BaБарий503
57LaЛантан538.1
58CeЦерий534.4
59PrПразеодим527
60NdНеодим533.1
61PmПрометий540
62SmСамарий544.5
63EuЕвропий547.1
64GdГадолиний593.4
65TbТербий565.8
66DyДиспрозий573
67HoГольмий581
68ErЭрбий589.3
69TmТулий596.7
70YbИттербий603.4
71LuЛютеций523.5
72HfГафний658.5
73TaТантал761
74WВольфрам770
75ReРений760
76OsОсмий840
77IrИридий880
78PtПлатина870
79AuЗолото890.1
80HgРтуть1007.1
81TlТаллий589.4
82PbСвинец715.6
83BiВисмут703
84PoПолоний812.1
85AtАстат890
86RnРадон1037
87FrФранций380
88RaРадий509.3
89AcАктиний499
90ThТорий587
91PaПротактиний568
92UУран597.6
93NpНептуний604.5
94PuПлутоний584.7
95AmАмериций578
96CmКюрий581
97BkБерклий601
98CfКалифорний608
99EsЭйнштейний619
100FmФермий627
101MdМенделевий635
102NoНобелий642
103LrЛоуренсий470
104RfРезерфордий580
Таблица 1. Энергия ионизации, справочные данные

Энергия сродства электрону

Также электроны могут присоединяться к атому, в процессе присоединения электрон выделяет энергию, такая энергия называется энергией сродства электрону, для каждого электрона конкретного атома энергия сродства численно равна и противоположна по знаку энергии ионизации, например, 17Cl, что бы оторвать 17й электрон у атома хлора, необходимо сообщить ему 13 эВ, любой другой электрон, который присоединится на место 17го электрона также выделит 13 эВ.

Катионы и анионы

Атомы, в которых количество протонов не равно количеству электронов называются ионами, поскольку электрон имеет отрицательный заряд, то если электронов больше протонов, то суммарный заряд отрицательный: S2- означает, что в данном атоме серы количество электронов больше чем протонов на два электрона. Соответственно, если электронов меньше чем протонов, то суммарный заряд положительный и обозначается H+. Отрицательно заряженные атомы называются анионами, положительно заряженные атомы – катионами.

Какой заряд будет у атома?

Теоретически возможно отобрать все электроны у атома, но это возможно только в лабораторных условиях и за пределами лаборатории атомы в таком состоянии находиться не будут, почему?

Вернёмся к устройству электронной оболочки. Вокруг атома электроны сгруппированы по энергетическим уровням, каждый заполненный уровень экранирует ядро и является более стабильным, нежели не до конца заполненный уровень.

То есть электронная конфигурация стремиться к состоянию заполненного подуровня: если на p-оболочке находится 5 электронов, то вероятнее атом примет один электрон, нежели отдаст пять. Так, например, у атома хлора, пять электронов на 3p-подуровне, энергия сродства хлора – 3.61 эВ, энергия ионизации – 13 эВ.

У натрия на последнем подуровне один электрон, энергия сродства – 0,78 эВ, потенциал ионизации – 0,49 эВ, поэтому вероятнее натрий отдаст один электрон, нежели примет его.

Зная потенциал ионизации и энергию сродства мы можем сделать предположение о взаимодействии веществ. Если смешать натрий и хлор, и сообщить им энергию, то вероятнее всего Na будет отдавать один электрон Cl и в результате получится смесь ионов Na+ и Cl-.

Пример

Так можно по номеру элемента предположить, какой заряд он будет иметь, например, 19й элемент, электронная конфигурация – 1s 22s 22p 63s 23p64s 1, вероятнее всего, такой элемент может либо отдать, либо принять один электрон.

У 27го элемента электронная конфигурация выглядит так: 1s 22s 22p 63s 23p64s 23d7, у d-подуровня всего может быть 10 атомов, т.е. либо атом примет 1,2 или 3 электрона, либо отдаст 1,2,3…7 электронов, так, вероятнее, он примет 3, т.е.

возможные состояния – это +1, +2 и +3,

Теперь Вы знаете, что такое ионы, осталось изучить химическую связи и Вы сможете составлять окислительно-восстановительные реакции!

Источник: https://k-tree.ru/articles/himiya/obschaya_himiya/ion

Атомы, ионы, молекулы – Основы химии на Ида Тен

Строение ионов

  • Атом и его строение
  • Ионы
  • Молекулы
  • Атомно-молекулярная теория

Над тем, как устроено вещество, люди размышляли с глубокой древности.

Античные греческие ученые предполагали, что вещества состоят из мельчайших, невидимых глазу частиц разной формы, которые соединяются друг с другом при помощи различных крючков и присосок. Слово «атом» в переводе с греческого означает «неделимый».

Так ли это? Действительно ли атом неделим? Существование атома было доказано лишь в XIX веке путем эксперимента. Установлено, что атом содержит еще более мелкие по размеру частицы. Атом состоит из ядра и электронов, находящихся в околоядерном пространстве.

В ядре сосредоточена практически вся масса атома. Вклад электронов в массу атома крайне мал. Масса электрона составляет 9,1 · 10−31 кг.

Каждый электрон заряжен отрицательно, условно его заряд принимают равным –1. Символ, которым принято обозначать электрон – ē. Электроны движутся вокруг ядра, перемещаясь по сложным траекториям. Ядро атома состоит из двух типов частиц: протонов и нейтронов. Протоны обозначают буквой р, а нейтроны – n.

В целом атом электронейтрален, то есть его заряд равен нулю. С учетом электронейтральности атома, количество электронов в атоме всегда совпадает с количеством протонов. С учетом того, что в ядре только протоны заряжены (нейтроны заряда не имеют), и заряд каждого протона +1, ядро имеет заряд.

Заряд ядра определяется количеством протонов, и всегда имеет знак + Заряд ядра обозначают символом Z (протонное число)Как определить количество электронов и протонов в атоме? На приведена схема строения атома водорода.

[attention type=red]

Видно, что атом водорода состоит из одного отрицательно заряженного электрона и положительно заряженного ядра, состоящего из одного протона.

[/attention]

Количество электронов и протонов в атоме химического элемента совпадает с его порядковым номером Рассмотрим другой пример. Определим количество электронов, протонов и заряд ядра для атома кислорода. Порядковый номер кислорода – 8.

Значит, в его атоме содержится 8 электронов, 8 протонов, заряд ядра +8.Как определить количество нейтронов?

В начале параграфа уже упоминалось, что практически вся масса атома сосредоточена в его ядре. В свою очередь ядро состоит из протонов и нейтронов.

Относительная атомная масса элемента, записанная в Периодической Системе, приблизительно равна сумма масс протонов и нейтронов, поскольку масса электронов очень мала.

Сумму масс протонов и нейтронов, равную округленной атомной массе химического элемента, называют массовым (нуклонным) числом и обозначают А. Определим количество нейтронов в атоме кислорода.

Относительная атомная масса кислорода с учетом округления равна 16. Вычтем количество протонов: 16 – 8 = 8. В атоме кислорода 8 нейтронов.

С учетом вышесказанного можем записать несколько простых выражений:

  • количество электронов равно количеству протонов ē = p;
  • заряд ядра равен количеству протонов и имеет знак +, Z = p

Атом – мельчайшая частица вещества, состоящая из ядра и электронов, движущихся в околоядерном пространстве Протоны и нейтроны имеют общее название – нуклоны (от лат. nucleus – «ядро»).

Термином нуклид обозначают атом с определённым порядковым номером Z и массовым числом А, т.е. с определённым набором протонов и нейтронов. Нуклиды с одним и тем же атомным номером, но с разными массовыми числами называются изотопными нуклидами или просто изотопами (от греч. «изос» – «равный» и «топос» – «место»).

Другими словами, в ядрах всех изотопов данного элемента содержится одинаковое число протонов, но разное число нейтронов. Нуклиды обозначают символом элемента и массовым

  • числом: 12С, 14N, 16O
  • другая форма записи: углерод-12, азот-14, кислород-16

Если массовое число не указывать, то подразумеваются все природные изотопы данного элемента. Иногда указывают и атомный номер элемента, но это не обязательно, поскольку символ элемента однозначно связан с определённым Z.

Так, для атомов водорода Z = 1, для азота Z = 7, для кислорода Z = 8 и т.д. Разных нуклидов значительно больше, чем элементов.

[attention type=green]

Например, в природе найдены три изотопа водорода – нуклиды 1Н, 2Н (другое обозначение D – дейтерий) и 3Н (или Т – тритий), три изотопа углерода (12С, 13С и 14С), четыре – серы, пять – кальция, шесть – селена, семь – молибдена, восемь – кадмия, девять – ксенона и десять – олова (это рекорд).

[/attention]

Есть и элементы одиночки, представленные всего одним нуклидом: 9Ве, 19F, 23Na, 27Al, 31P и др. Некоторые природные нуклиды нестабильны: со временем они распадаются; это – радионуклиды.

Ионы

В отличие от атомов, ионы – это заряженные частицы. Ионы образуются в том случае, если нейтральный атом «потеряет» или «приобретет» часть электронов. Например, в результате некоторой реакции, атом натрия утратил один электрон.

Обратимся к Периодической Системе, согласно которой узнаем, что в атоме натрия 11 электронов.

Если один электрон покинет атом, их останется 10, тогда нарушится принцип электронейтральности атома и положительно заряженное ядро будет доминировать, то есть частица приобретет положительный заряд. Частица Na+ и есть ион.

Возможен и другой вариант, атом, в результате химической реакции, может присоединять электроны. В этом случае образуется избыток электронов и, следовательно, суммарный отрицательный заряд электронов больше, чем положительный заряд ядра. Такой ион будет заряжен отрицательно.

Молекулы

Из курса природоведения вам известно, что молекулы образуются из атомов посредством их взаимодействия в результате химических реакций. Например, молекула водорода Н2, образуется при взаимодействии двух атомов водорода.

Молекула – наименьшая частица вещества, обладающая его химическими свойствами, состоящая из двух или более атомов Подобно молекулам водорода образуются и другие молекулы, например: молекула азота N2, кислорода О2, хлора Cl2 и другие молекулы.

Конечно же, существуют и более сложные молекулы, состоящие из большего числа атомов. Например, сладкий вкус фруктам придает глюкоза.

Существуют очень большие молекулы, в состав которых входят десятки, сотни и даже тысячи атомов! Например, молекулы белков, из которых состоят все живые организмы, состоят из сотен и тысяч различных атомов!

Атомно-молекулярная теория

Процесс познания складывается таким образом, что блестящие догадки и великие теории, являвшиеся в свое время результатом гениального творчества, через более или менее продолжительное время становятся едва ли не тривиальными фактами, которые большинство людей принимает на веру.

Многие ли из нас могли бы самостоятельно, на основе наблюдений и размышлений, догадаться, что Земля круглая, или что Земля вращается вокруг Солнца, а не наоборот, и наконец, что существуют атомы и молекулы? С высоты современной науки основные положения атомно-молекулярной теории выглядят всем известными положениями.

Но для ученых прошлого, пытавшихся решить два основных вопроса:

  1. Из чего состоят вещества?
  2. Почему вещества бывают разными, и почему одни вещества могут превращаться в другие? на решение их ушло более 2000 лет.

Результатом стала атомно- молекулярная теория, основные положения которой можно сформулировать следующим образом:

  1. Все вещества состоят из молекул. Молекула – наименьшая частица вещества, обладающая его химическими свойствами.
  2. Молекулы состоят из атомов. Атом – наименьшая частица элемента в химических соединениях. Разным элементам соответствуют разные атомы.
  3. Молекулы и атомы находятся в непрерывном движении.
  4. При химических реакциях молекулы одних веществ превращаются в молекулы других веществ. Атомы при химических реакциях не изменяются.

Вывод из статьи про Атомы, ионы, молекулы

  • Атом – мельчайшая частица вещества, состоящая из ядра и электронов, движущихся в околоядерном пространстве
  • Атом состоит из элементарных частиц: электронов, протонов, нейтроно
  • Заряд ядра определяется количеством протонов, и всегда имеет знак +. Заряд ядра обозначают символом Z (протонное число)
  • Количество электронов и протонов в атоме химического элемента совпадает с его порядковым номером Z
  • Округленная до целочисленного значения относительная атомная масса элемента называется массовым (нуклонным) числом и обозначается А
  • Ион – заряженная частица, образовавшаяся в результате потери или присоединения атомом части электронов
  • Катионы – ионы, заряженные положительно
  • Анионы – ионы, заряженные отрицательно
  • Молекула – нейтральная частица, состоящая из двух или более атомов
  • Атомно-молекулярная теория является результатом развития представлений человека об окружающем мире

Источник: https://idaten.ru/chemistry/atomi-ioni-molekuli

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: