Строение ядра клетки таблица

Особенности строения и функции ядра клетки

Строение ядра клетки таблица

Ядро – главное составляющее живой клетки, которое несет наследственную информацию, закодированную набором генов. Оно занимает центральное положение в клетке. Размеры варьируются, форма обычно сферичная или овальная. В диаметре ядро в разных клетках может быть от 8 до 25мкм. Есть исключения, примеру, яйцеклетки рыб имеют ядра диаметром в 1 мм.

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

[attention type=yellow]

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

[/attention]

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами.

Хромосомы несут в себе основную генетическую информацию каждого человека.

Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

  • Равноплечие;
  • разноплечие,
  • одноплечие.

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается.

[attention type=red]

Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк.

[/attention]

Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

  1. Принимает участие в синтезе белка, рибосомной РНК.
  2. Регулирует функциональную активность клетки.
  3. Сохранение генетической информации, точная ее репликация и передача потомству.

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

Оцените, пожалуйста, статью. Мы старались:) (16 4,69 из 5)
Загрузка…

Источник: https://animals-world.ru/yadro-stroenie-i-funkcii-v-period-interfazy/

Строение клетки

Строение ядра клетки таблица

Гиалоплазма — основное вещество цитоплазмы, жидкая среда, заполняющая внутреннее пространство  клетки. Входяшие в ее состав ферменты, участвуют в синтезе аминокислот, нуклеотидов, сахаров.

 Здесь протекает часть реакций энергетического и пластического обмена. Благодаря гиалоплазме объединяются все клеточные структуры и обеспечивается их химическое взаимодействия друг с другом.

В этом состоит ее важнейшая роль.

В клетках живых организмов постоянно присутствуют специализированные структуры — органоиды. Они имеют определенное строение и осуществляют строго определенные функции.

Органоиды могут быть мембранными, которые отграниченны от гиалоплазмы мембранами, и немембранными. Кроме того, органоиды подразделяют на общие, имеющиеся у большинства клеток (митохондрии, эндоплазматическая сеть, рибосомы и т.д.

), и специальные, которые характерны только для некоторых специализированных клеток (реснички, жгутики).

Клеточный центр (центросома)

Клеточный центр или центросома — органоид цитоплазмы, который не отделен от нее мембраной. Он играет важную роль и при делении клетки, и непосредственно участвует в формировании ахроматинового веретена, необходимого для правильной ориентации и расхождения хромосом.

 В промежутках между делениями клетки клеточный центр участвует в образовании внутриклеточного цитоскелета, который состоит из микротрубочек и микрофиламентов.

Основной частью клеточного центра являются центриоли — два небольших цилиндрических тельца, состоящих из 27 микротрубочек, которые сгруппированны в девять групп по три в каждой. Обычно оси двух центриолей перпендикулярны относительно друг друга.

От них отходят короткие микротрубочки, участвующие в формировании цитоскелета. Хорошо выраженный клеточный центр есть в клетках животных, грибов и некоторых растений (например, водоросли, мхи или папоротники). В клеточном центре клеток покрытосеменных растений центриоли отсутствуют.

Рибосомы.

Рибосомы — очень важный обязательный органоид всех клеток, как эукариот, так и прокариот, так он обеспечивает одно из основных проявлений жизни — синтез белка. У рибосом нет мембраны, они состоят из рибосомальной РНК (рРНК) и большого количества белков.

В составе каждой рибосомы есть две субъединицы: большая и малая. Основная функция малой субъединицы — «расшифровка» генетической информации. Она связывает информационную РНК (иРНК) и транспортную РНК (тРНК), несущие аминокислоты.

Функция большой субъединицы — образование пептидной связи между аминокислотами, принесенными в рибосому двумя соседними молекулами тРНК. Белки и рРНК, входящие в состав рибосом, синтезируются в ядре (в ядрышке), а затем поступают в цитоплазму.

Кроме этого рибосомы находятся в органоидах, имеющих свой собственный генетический аппарат, — в митохондриях и пластидах. Рибосомы располагаются в цитоплазме клеток либо свободно, либо на поверхности шероховатой эндоплазматической сети.

Иногда, на одной молекуле иРНК собирается несколько рибосом (подобная структура называется полисомой). По размеру цитоплазматические рибосомы эукариот несколько больше рибосом прокариот и рибосом митохондрий и пластид.

Эндоплазматическая сеть (эндоплазматический ретикулум).

Эндоплазматическая сеть (эндоплазматический ретикулум) пронизывает всю цитоплазму большинства клеток. Она состоит из многочисленных однослойных мембранных трубочек, цистерн и каналов самой разнообразной формы и размера, которые соединяются с плазматической и ядерной мембранами.

Эндоплазматические сети делятся на два типа: гладкие и шероховатые. На мембранах шероховатой сети располагаются рибосомы. В этих рибосомах синтезируются белки, поступающие затем в полости эндоплазматической сети и транспортирующиеся по ним к комплексу Гольджи.

На мембранах гладкой эндоплазматической сети расположены ферментные комплексы, участвующие в синтезе углеводов, жиров, пигментов. В некоторых специализированных клетках эндоплазматическая сеть выполняет специальные функции.

Так, в мышечных клетках в эндоплазматической сети накапливается кальций, который освобождается в процессе мышечного сокращения и удаляется обратно при расслаблении. Некоторые клетки (например, эритроциты) при созревании теряют эндоплазматическую сеть.

Комплекс Гольджи

Комплекс Гольджи (аппарат Гольджи) расположен обычно вблизи ядра и состоит из сложной сети однослойных мембранных образований разной формы и размера. Как правило, это группа крупных плоских полостей, расположенных стопками, с отходящими от них трубочками и пузырьками.

В комплексе Гольджи происходит накопление продуктов синтетической деятельности клеток (белков, углеводов и жиров) и веществ, поступающих в клетку из окружающей среды.

[attention type=green]

Здесь может происходить дополнительная модификация этих веществ, например, к белкам присоединяются углеводные компоненты с образованием гликопротеинов. После этого вещества могут поступать в цитоплазму в виде капель или зерен, или выводиться (секретироваться) из клетки.

[/attention]

В образовании лизосом и вакуолей принимают участие мембранные трубочки и пузырьки комплекса Гольджи.

Лизосомы

Лизосомы — мелкие однослойные мембранные пузырьки, которые образуются в комплексе Гольджи.

Они содержат большое количество ферментов (приблизительно 40), и способны расщеплять и переваривать различные вещества — белки, полисахариды, жиры и нуклеиновые кислоты, как поступающие в клетку извне, так и образующиеся в самой клетке. Т.е. лизосомы выполняют функцию «пищеварительных центров» клетки.

Много лизосом обнаруживается в лейкоцитах, где они участвуют в переваривании микроорганизмов. Отслужившие свой срок и поврежденные макромолекулы (белки, РНК и т.д.) также поступают в лизосомы, где расщепляются до мономеров и вновь выходят в цитоплазму, чтобы включиться в обмен веществ.

Если мембраны лизосом разрушаются, их пищеварительные ферменты начинают разрушение клеточных органоидов и других структур, приводя к гибели клетки. Такой процесс, например, имеет место при рассасывании временных органов эмбрионов или личинок (жабры и хвост у головастика).

Митохондрии

Митохондрии представляют собой микроскопические тельца различной формы, окруженные двухслойной мембраной. Их размеры варьируются от 0,2 до 7 нм.

Наружная мембрана метохондрий гладкая, а внутренняя образует многочисленные ветвящиеся складки, направленные внутрь митохондрии, так называемые кристы, значительно увеличивающие площадь внутренней мембраны. Матрикс —  внутреннее содержимое метохондрии, т.е. пространство, ограниченное внутренней мембранной. В матриксе метохондрии присутствуют многочисленные ферменты.

В процессе кислородного этапа энергетического обмена (клеточного дыхания) эти ферменты участвуют в окислительном расщеплении жиров, белков и углеводов до воды и углекислого газа. Во внутренней мембране митохондрий содержатся белки-переносчики электронов и другие ферменты, которые участвуют в окислении биологических субстратов и образовании АТФ в процессе окислительного фосфорилирования.

 Внутренняя мембрана митохондрий практически непроницаема для протонов, поэтому на ней в процессе окисления субстратов возникает градиент концентрации протонов, энергия которого используется для синтеза АТФ. Таким образом, митохондрии представляют собой «энергетические станции» клеток, основной функцией которых является окисление различных веществ, сопряженное с синтезом АТФ.

В митохондриях имеется своя собственная кольцевая молекула ДНК и весь аппарат, необходимый для синтеза белка (рибосомы, иРНК и тРНК). Количество митохондрий в клетках может варьироваться от одной или нескольких до многих десятков. Они способны делиться, образуя дочерние митохондрии.  Митохондрии встречаются в клетках всех аэробных (обитающих в кислородных условиях) эукариот, т.е.

в растениях, грибах и животных.

Пластиды.

Пластиды — цитоплазматические органоиды, окруженные двухслойной мембраной,  присутствуют только в растительных клетках. В клетках животных и грибов пластиды отсутствуют.

Как и в митохондриях, в пластидах есть свой собственный генетический аппарат — кольцевая молекула ДНК, рибосомы и различные типы РНК.

 Различают три типа пластид: хлоропласты, хромопласты и лейкопласты.

Хлоропласты — зеленые пластиды. Их зеленый цвет следствие того, что в них присутствует зеленый пигмент хлорофилла. Хлоропласты присутствуют в фотосинтезирующих клетках всех зеленых растений. По своей форме они похожи на линзу. Хлоропласты водорослей  называют хроматофорами. Они имеют разнообразную форму (спиральную, сетчатую, звездчатую).

Хлоропласты окружены двухслойной мембраной. Наружная мембрана гладкая, а во внутренней образуются многочисленные выросты, которые формируют линзовидные образования — тилакоиды, собранные в стопки — граны. Название внутреннего содержимого хлоропластов — строма.

[attention type=yellow]

В мембранах тилакоидов расположены пигменты и белки-переносчики электронов, участвующие в световой фазе фотосинтеза. Под действием света они разлагают воду. При этом выделяется свободный кислород, а освобождающиеся электроны переносятся на молекулу НАДФ+, восстанавливая ее до НАДФН.

[/attention]

Процесс переноса электронов сопряжен с синтезом АТФ (фотофосфорилирование). В строме локализуются ферменты, участвующие в темновой фазе фотосинтеза. С использованием АТФ и НАДФН, образующихся в световой фазе, они синтезируют глюкозу из воды и углекислого газа.

Хлоропласты могут терять хлорофилл и превращаться в хромопласты и лейкопласты. Такой процесс происходит, например, осенью при пожелтении и покраснении листвы и при созревании зеленых плодов.

Хромопласты — это пластиды, окрашенные в желтые, красные и оранжевые цвета, могут быть различной формы и размера. Их цвет обусловлен присутствием различных пигментов (каротинов, ксантофиллов, ликопина и др.).

 Хромопласты могут определять окраску различных частей растений: стеблей, цветков, плодов, листьев. Под воздействием света хромопласты могут превращаться в хлоропласты. Например, это происходит при позеленении корнеплодов моркови.

Лейкопласты — это бесцветные пластиды, лишенные пигментов,  по форме и размерам близкие к хлоропластам. В них происходит накопление запасных веществ (крахмала, жиров, белков).

 Лейкопласты содержатся в разных частях растений: корнях, клубнях и т.д. Под воздействием света они также, как и хромопласты, могут превращаться в хлоропласты.

Например, клубни картофеля зеленеют на свету.

Вакуоли

Вакуоли представляют собой окруженные однослойной мембраной округлые полости, заполненные клеточным соком, содержащим различные минеральные и органические вещества (углеводы, белки, алкалоиды, пигменты, дубильные вещества, различные соли и их кристаллы и т.д.).

Вакуоли образуются из пузырьков комплекса Гольджи. Крупные вакуоли типичны для растительных клеток, где они участвуют в поддержании тургора; в животных клетках они обычно не встречаются.

 У одноклеточных организмов вакуоли выполняют специальные функции пищеварения (пищеварительные вакуоли) и выведения из клеток излишков воды и продуктов обмена (сократительные вакуоли).

Специальные органоиды

Специальные органоиды присутствуют в специализированных клетках, выполняющих определенные функции. Так, реснички и жгутики отвечают за различные виды движения.

С их помощью осуществляется движение одноклеточных и многоклеточных организмов, зооспор водорослей, сперматозоидов млекопитающих и т.д. Реснитчатый эпителий покрывает пищевод и дыхательные пути животных и человека, жабры рыб, а также, поверхность тела ресничных червей.

Миофибриллы — нити, состоящие из белков актина и миозина, и обеспечивающие сократительную активность всех типов мышц.

Кроме органоидов, в клетках могут присутствовать различные включения (крахмальные зерна, капли жиров, гранулы белка или гликогена). Как правило, они выполняют запасные функции. Иногда в виде включений могут накапливаться продукты жизнедеятельности клеток — кристаллы органических кислот и пигментов.

В следующем разделе мы рассмотрим ядро клеток эукариот.

Источник: https://www.studentguru.ru/structure-cell.html

Конспект

Строение ядра клетки таблица

Раздел ЕГЭ: 2.4. Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки — основа ее целостности.

Строение и функции клетки

Клетка представляет собой элементарную систему биополимеров, ограниченных мембраной, образующих основные структурные компоненты — оболочку, цитоплазму и ядро, обеспечивающих метаболические процессы и осуществляющих поддержание и воспроизведение всей системы. Это элементарная структурно-функциональная и генетическая единица живого.

Ранее изученная информация о строении и функции клеток в 6-9 классах:

Структура и функции мембран клетки

Биологическая мембрана образована билипидным слоем жидких фосфолипидов. Молекулы липидов гидрофильными концами обращены наружу, а гидрофобными — друг к другу. Белковые молекулы могут находиться на поверхностях липидов (периферические белки), пронизывать один слой (полуинтегралъные) и оба слоя (интегральные) липидов.

Липиды и белки удерживаются гидрофильно-гидрофобными взаимодействиями. На поверхности мембран располагается гликокачикс — разветвленные гликопротеиновые структуры, которые обеспечивают рецепторную функцию и взаимосвязь клеток многоклеточного организма. Свойства: пластичность; способность к самозамыканию: избирательная проницаемость.

 Функции: структурная; регуляторная; защитная; рецепторная; ферментативная; разграничительная.

Плазмалемма — цитоплазматическая мембрана, покрывающая клетку. На наружной поверхности мембраны имеется гликокаликс. У животных клеток она может быть покрыта муцином, слизью, хитином; у растений — целлюлозой, лигнином. Функции: барьерная; регуляторная; рецепторная; структурная.

Эндоцитоз — поступление веществ в клетку. Способы поступления веществ в клетку:

  • простая диффузия — поступление в клетку ионов и мелких молекул через плазмалемму по градиенту концентрации без затрат энергии;
  • осмос — поступление в клетку растворителя (воды) по градиенту концентрации без затрат энергии;
  • облегченная диффузия — перемещение веществ с участием белков-переносчиков (пермеаз) по градиенту концентрации без затрат энергии (некоторые аминокислоты);
  • активный транспорт — перемещение веществ против градиента концентрации с помощью транспортных белков — поринов и АТФ-аз с затратой энергии (так в клетку поступают ионы Са2+ и Mg2+, моносахариды, аминокислоты);
  • фагоцитоз — поступление в клетку крупных молекул и частиц; при этом мембрана клетки окружает частицу, края ее смыкаются и частица поступает в цитоплазму в мембранном пузырьке — эндосоме (идет с затратой энергии);
  • пиноцитоз — поступление в клетку капелек жидкости аналогично фагоцитозу.

Экзоцитоз — выведение из клетки веществ (гормонов, белков, капель жира), заключенных в мембранные пузырьки.

 Цитоплазма

Цитоплазма состоит из воды (85%), белков (10%), органических и минеральных соединений (остальной объем). В цитоплазме различают гиалоплазму, цитоскелет, органеллы и включения.

Гиалоплазма. Представляет собой коллоидный раствор, обеспечивающий вязкость, эластичность, сократимость и движение цитоплазмы, в котором протекают реакции внутриклеточного метаболизма. Является внутренней средой клетки, где протекают реакции внутриклеточного обмена.

Цитоскелет. Образован развитой сетью белковых нитей — филаментов. Представлен микротрубочками, микрофиламентами и промежуточными филаментами.

Микротрубочки — тонкие трубочки диаметром около 24 нм, толщина их стенки около 5 нм, образованы белком тубулином. Образуют веретено деления, входят в состав жгутиков и ресничек, располагаются в цитоплазме клеток. Обеспечивают расхождение дочерних хромосом в анафазах митоза и мейоза, движение жгутиков и ресничек, перемещение органелл и придают форму клетке.

Микрофиламенты — очень тонкие белковые нити диаметром около 6 нм, образованы преимущественно белком актином. Они переплетаются и образуют густую сеть в цитоплазме. Обеспечивают двигательную активность гиалоплазмы, участвуют в эндо- и экзоцитозе.

Промежуточные филаменты — диаметр их около 10 нм, образованы молекулами разных фибриллярных белков (цитокератин и др.). Выполняют опорную функцию.

 Органеллы клетки. Это постоянные структурные компоненты цитоплазмы клетки, имеющие определенное строение и выполняющие определенные функции. Большинство органелл имеют мембранное строение, мембраны отсутствуют в структуре рибосом и центриолей.

Органеллы общего назначения имеются в большинстве клеток (эндоплазматическая сеть, митохондрии, комплекс Гольджи и др.); специального назначения содержатся только в специализированных клетках (жгутики, реснички, пульсирующие вакуоли, миофибриллы и др.).

 Эндоплазматическая сеть (ЭПС) — это система каналов, образованных биологическими мембранами и пронизывающих гиалоплазму. Каналы ЭПС соединены с перинуклеарным пространством.

Имеется гладкая ЭПС и гранулярная — на ее мембранах расположены рибосомы.

Участвует в транспорте веществ, синтезированных в клетке и поступивших извне; делении цитоплазмы на отсеки; синтезе жиров и углеводов (агранулярная функция) и белков (гранулярная функция).

Рибосомы — сферические тельца диаметром 15-35 нм, состоящие из большой и малой субъединиц, построены из белка и рРНК. Располагаются на мембранах ЭПС, на наружной ядерной мембране, в цитоплазме. Непосредственно участвуют в сборке молекул белков (трансляция).

 Митохондрии содержат две мембраны, наружную — гладкую и внутреннюю, которая образует выросты внутрь матрикса (гомогенного содержимого) — кристы. В матриксе располагаются кольцевые молекулы ДНК и рибосомы, а на кристах — АТФ-сомы (грибовидные тела). Участвует в кислородном этапе энергетического обмена; синтезе АТФ и специфических белков.

Комплекс (аппарат) Гольджи образован комплексом биологических мембран в виде узких каналов, расширяющихся на концах в цистерны, от которых отпочковываются пузырьки, способные превращаться в вакуоли. Участвует в концентрации, обезвоживании, уплотнении и упаковке веществ; образовании первичных лизосом; сборке комплексных органических соединений (липопротеинов, гликолипидов и др.).

Лизосомы — шаровидные тельца, ограниченные биологической мембраной, диаметром 0,2-1 мкм. Внутри содержится около 40 гидролитических ферментов. Расщепляют пищевые вещества и бактерии, поступившие в клетку (гетерофагия); разрушают временные органы эмбрионов, личинок и отмирающие структуры (аутофагия).

 Пластиды — органоиды, содержащиеся только в растительных клетках. Имеют размеры 5-10 мкм. Их стенка образована двумя мембранами, между которыми располагается строма, пронизанная параллельно расположенными мембранами — тилакоидами. В отдельных участках тилакоидов находятся замкнутые полости (граны). В строме есть ДНК и рибосомы.

Хлоропласты в гранах содержат хлорофилл. В них происходит фотосинтез и синтез специфических белков.

[attention type=red]

Хромопласты построены сходно с хлоропластами. Содержат пигменты — каротиноиды, придающие окраску цветкам и плодам.

[/attention]

Лейкопласты имеют сходное с хлоропластами строение. Не содержат пигментов. В них происходит синтез и накопление белков, жиров и углеводов.

 Центросома (клеточный центр) — органоид, содержащийся вблизи ядра клетки. Представлен двумя центриолями, окруженными центросферой. Цилиндрические центриоли образованы 27 микротрубочками, сгруппированными по три; центриоли расположены перпендикулярно друг к другу. Образует полюса и веретено деления при митозе и мейозе.

 Вакуоли представляют собой участки гиалоплазмы, ограниченные элементарной мембраной. У растений содержат клеточный сок и поддерживают тургорное давление; у протистов выполняют пищеварительную и выделительную функции.

 Органеллы движения — это жгутики и реснички. Содержат по 20 микротрубочек, образующих девять пар по периферии и две одиночные в центре, покрыты элементарной мембраной.

У основания находятся базальные тельца, образующие микротрубочки. Обеспечивают движение протистов, бактерий, сперматозоидов и ресничных червей.

В дыхательных путях служат для удаления попавших инородных частиц.

 Включения. Это непостоянные компоненты цитоплазмы клетки, не выполняющие непосредственных функций в клетке, содержание которых изменяется в зависимости от функционального состояния клетки.

Трофические включения — запасы питательных веществ в клетке. В растительных клетках — это преимущественно крахмал и белки; в животных — гликоген и жир.

 Секреторные включения представляют собой продукты жизнедеятельности клеток желез внешней и внутренней секреции. К ним относятся ферменты, гормоны, слизь, подлежащие выведению из клетки.

 Экскреторные включения являются продуктами обмена веществ (кристаллы щавелевой кислоты, щавелевокислого кальция и др.).

 Строение и функции клеточного ядра

Клеточное ядро обязательный компонент всех эукариотических клеток. Содержит кариолемму (ядерную оболочку), кариоплазму (ядерный сок), хроматин и ядрышки.

Кариолемма представлена двумя биологическими мембранами; наружная ядерная мембрана непосредственно переходит в мембраны ЭПС; на ней имеются рибосомы. Между мембранами находится перинуклеарное пространство, сообщающееся с каналами ЭПС. В мембранах есть поры. Обеспечивает регуляцию обмена веществ между ядром и цитоплазмой.

Кариоплазма состоит из воды, минеральных солей, белков (ферментов), нуклеотидов, АТФ и различных видов РНК. Обеспечивает взаимосвязи между ядерными структурами.

 Хроматин образован дезоксинуклеопротеином (ДНП), содержащим молекулы ДНК, белки-гистоны и иРНК. Это деспирализованные хромосомы, образующие гранулы и глыбки. В профазах митоза и мейоза хроматин, спирализуясь, образует хромосомы.

Метафазные хромосомы состоят из двух продольных нитей ДНП — хроматид, соединенных друг с другом в области центромеры (первичной перетяжки). Центромера делит тело хромосомы на два плеча. Некоторые хромосомы имеют вторичную перетяжку, отделяющую от плеча спутник. На конце плеча имеются теломеры, препятствующие соединению разных хромосом.

Типы хромосом:

  • метацентрические — равноплечие;
  • субметацентрические — неравноплечие;
  • акроцентрические — одно плечо очень короткое.

 Ядрышки — шарообразные, не окруженные мембраной образования, состоящие из белков, рРНК и небольшого количества ДНК. Непостоянны. Образуются в области вторичных перетяжек хромосом (ядрышковых организаторов). В них формируются субъединицы рибосом.

Таблица «Строение и функции клетки».

Это конспект по теме «Строение и функции клетки». Выберите дальнейшие действия:

Источник: https://uchitel.pro/%D1%81%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B8-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8-%D0%BA%D0%BB%D0%B5%D1%82%D0%BA%D0%B8/

Строение и функции органоидов клетки. Органоиды клетки таблица

Строение ядра клетки таблица

Органеллы, они же органоиды являются основой правильного развития клетки. Они представляют собой постоянные, то есть никуда не исчезающие структуры, которые имеют определенное строение, от которого напрямую зависят выполняемые ими функции.

Различают органоиды следующих типов: двумембранные и одномембранные.

Строение и функции органоидов клетки заслуживают особого внимания для теоретического и по возможности практического изучения, так как эти структуры, несмотря на свои маленькие, не различимые без микроскопа размеры, обеспечивают поддержание жизнеспособности всех без исключения органов и организма в целом.

Двумембранные органоиды — это пластиды, клеточное ядро и митохондрии. Одномембранные — органеллы вакуолярной системы, а именно: эпс, лизосомы, комплекс (аппарат) Гольджи, различные вакуоли. Существуют также и немембранные органоиды – это клеточный центр и рибосомы. Общее свойство мембранных видов органелл — они образовались из биологических мембран.

Растительная клетка отличается по строению от животной, чему не в последнюю очередь способствуют процессы фотосинтеза. Схему фотосинтетических процессов можно прочитать в соответствующей статье. Строение и функции органоидов клетки указывают на то, что для обеспечения их бесперебойной работы нужно, чтобы каждый из них в отдельности работал бес сбоев.

Клеточная стенка или матрикс состоит из целлюлозы и ее родственной структуры — гемицеллюлозы, а также пектинов. Функции стенки — защита от негативного влияния извне, опорная, транспортная (перенос из одной части структурной единицы в другую питательных веществ и воды), буферная.

Ядро образовано двойной мембраной с углублениями — порами, нуклеоплазмой, содержащей в своем составе хроматин, ядрышками, в которых хранится наследственная информация.

Вакуоль — это ни что иное, как слияние участков ЭПС, окруженной специфической мембраной, называемой тонопластом который регулирует процесс, называемый   выделение и обратный ему — поступление необходимых веществ.

ЭПР представляет собой каналы, образованные мембранами, двух типов — гладкими и шероховатыми. Функции, которые выполняет эпр – синтез и транспортная.

Рибосомы – выполняют функцию синтезирования белка.

К основным органоидам относят: митохондрии, пластиды, сферосомы, цитосомы, лизосомы, пероксисомы, АГи транслосомы.

Таблица. Органоиды клетки и их функции

В этой таблице рассматриваются все имеющиеся органоиды клетки, как растительной, как и животной.

 Органоид (Органелла)СтроениеФункции
 Цитоплазма Внутренняя полужидкая субстанция, основа клеточной среды, образована мелкозернистой структурой. Содержит ядро и набор органоидов. Взаимодействие между ядром и органоидами. Транспорт веществ.
 ЯдроШаровидной или овальной формы. Образовано ядерной оболочкой, состоящей из двух мембран, имеющих поры. Имеется полужидкая основа, называемая кариоплазма или клеточный сок.Хроматин или нити ДНК, образуют плотные структуры, называемые хромосомами.Ядрышки – мельчайшие, округлые тельца ядра.Регулирует все процессы биосинтеза, такие как обмена веществ и энергии, осуществляет передачу наследственной информации.Кариоплазма ограничивает ядро от цитоплазмы, кроме того, дает возможность осуществлять обмен между непосредственно ядром и цитоплазмой.В ДНК заключена наследственная информация клетки, поэтому ядро – хранитель всей информации об организме.В ядрышках синтезируются РНК и белки, из которых образуются в последствие рибосомы.
 Клеточная мембрана Образована мембрана двойным слоем липидов, а также белком. У растений снаружи покрыта дополнительно слоем клетчатки. Защитная, обеспечивает форму клеток и клеточную связь, пропускает внутрь клетки необходимые вещества и выводит продукты обмена. Осуществляет процессы фагоцитоза и пиноцитоза.
 ЭПС (гладкая и шероховатая)Образована эндоплазматическая сеть системой каналов в цитоплазме. В свою очередь, гладкая эпс образована, соответственно, гладкими мембранами, а шероховатая ЭПС – мембранами, покрытыми рибосомами.Осуществляет синтез белков и некоторых других органических веществ, а также является главной транспортной системой клетки.
 Рибосомы Отростки шероховатой мембраны эпс шарообразной формы.  функция – синтез белков.
 Лизосомы Пузырек, окруженный мембраной. Пищеварение в клетке
 Митохондрии Покрыты наружной и внутренней мембранами. Внутренняя мембрана имеет многочисленные складки и выступы, называемые кристами Синтезирует молекулы АТФ. Обеспечивает клетку энергией.
 Пластиды Тельца, окруженные двойной мембраной. Различают бесцветные (лейкопласты) зеленые (хлоропласты) и красные, оранжевые, желтые (хромопласты)Лейкопласты — накапливают крахмал.Хлоропласты — участие в процессе фотосинтеза.Хромопласты — Накапливание каратиноидов.
 Клеточный Центр Состоит из центриолей и микротрубочек Участвует в формировании цитоскелета. Участие в процессе деления клетки.
 Органоиды движения Реснички, жгутики Осуществляют различные виды движения
 Комплекс (аппарат) Гольджи Состоит из полостей, от которых отделяются пузырьки разных размеров Накапливает вещества, которые синтезируются собственно клеткой. Использование этих веществ или вывод во внешнюю среду.

Строение ядра — видео

Источник: https://life-students.ru/stroenie-i-funkcii-organoidov-kletki-organoidy-kletki-tablica/

Клетка человека ее строение и функции: таблица, особенности устройства и что такое клеточный центр

Строение ядра клетки таблица

Все живые существа и организмы на Земле состоят из клеток: растения, грибы, бактерии, животные, люди. Несмотря на минимальный размер, все функции целого организма выполняет клетка. Внутри нее протекают сложные процессы, от которых зависит жизнеспособность тела и работа его органов….

Структурные особенности

Учёные занимаются изучением особенности строения клетки и принципов ее работы. Детально рассмотреть особенности структуры клетки можно только при помощи мощного микроскопа.

Все наши ткани кожные покровы, кости, внутренние органы состоят из клеток, которые являются строительным материалом, бывают разных форм и размеров, каждая разновидность выполняет определённую функцию, но основные особенности их строения сходны.

Сначала выясним, что лежит в основе структурной организации клеток. В ходе проведенных исследований ученые установили, что клеточным фундаментом является мембранный принцип. Получается, что все клетки образованы из мембран, которые состоят из двойного слоя фосфолипидов, куда с наружной и внутренней стороны погружены молекулы белков.

Какое свойство характерно для всех типов клеток: одинаковое строение, а также функционал регулирование процесса обмена веществ, использование собственного генетического материала (наличие ДНК и РНК), получение и расход энергии.

Строение клетки

В основе структурной организации клетки выделяются следующие элементы, выполняющие определенную функцию:

  • мембрана клеточная оболочка, состоит из жиров и протеинов. Ее основная задача – отделять вещества, находящиеся внутри, от внешней среды. Структуру имеет полупроницаемую: способна пропускать кислород и оксид углерода,
  • ядро – центральная область и главный компонент, отделяется от других элементов мембраной. Именно внутри ядра находится информация о росте и развитии , генетический материал, представленный в виде молекул ДНК, входящих в состав хромосом,
  • цитоплазма это жидкая субстанция, образующая внутреннюю среду, где происходят разнообразные жизненно важные процессы, содержит в себе очень много важных компонентов.

Из чего состоит клеточное содержимое, каковы функции цитоплазмы и ее основных компонентов:

  1. Рибосома важнейший органоид, который необходим для процессов биосинтеза белков из аминокислот, белки выполняют огромное количество жизненно важных задач.
  2. Митохондрии – ещё один компонент, находящийся внутри цитоплазмы. Его можно описать одним словосочетанием – энергетический источник. Их функция заключается в обеспечении компонентов питанием для дальнейшего производства энергии.
  3. Аппарат Гольджи состоит из 5 – 8 мешочков, которые соединены между собой. Основная задача этого аппарата – передача протеинов в другие части клетки для обеспечения энергетического потенциала.
  4. Очистку от повреждённых элементов производят лизосомы.
  5. Транспортировкой занимается эндоплазматическая сеть, по которой белки перемещают молекулы полезных веществ.
  6. Центриоли отвечают за воспроизводство.

Ядро

Поскольку ядро клеточный центр, поэтому следует уделить его строению и функциям особое внимание. Данный компонент является важнейшим элементом для всех клеток: содержит наследственные признаки. Без ядра стали бы невозможными процессы размножения и передачи генетической информации. Посмотрите на рисунок, изображающий строение ядра.

  • Ядерная оболочка, которая выделена сиреневым цветом, пропускает внутрь нужные веществам и выпускает обратно через поры маленькие отверстия.
  • Плазма представляет собой вязкую субстанцию, в ней находятся все остальные ядерные компоненты.
  • ядро размещается в самом центре, имеет форму сферы. Его главная функция – образование новых рибосом.
  • Если рассмотреть центральную часть клетки в разрезе, то можно увидеть малозаметные синие переплетения хроматин, главное вещество, который состоит из комплекса белков и длинных нитей ДНК, несущих в себе необходимую информацию.

Клеточная мембрана

Давайте подробнее рассмотрим работу, строение и функции этого компонента. Ниже представлена таблица, наглядно показывающая важность внешней оболочки.

Название органоидаСтроение органоидаФункции органоида
Наружная клеточная мембранаОчень тонкая плёнка, которая состоит из двух молекулярных слоев белка, а также из слоя липидов. Также присутствуют поры, через которые могут проникать некоторые веществаМембрана отделяет клетку от внешней среды, но обладает полупроницаемостью. Регулирует поступление веществ в клетку, и обеспечивает обмен веществ между клеткой и окружающей средой.

Строение мембраны

Хлоропласты

Это ещё один наиважнейший компонент. Но почему о хлоропластах не было упомянуто раньше, спросите вы. Да потому, что этот компонент содержится только в клетках растений. Главное различие между животными и растениями заключается в способе питания: у животных оно гетеротрофное, а у растений автотрофное.

Это означает, что животные не способны создавать, то есть синтезировать органические вещества из неорганических – они питаются готовыми органическими веществами. Растения же, напротив, способны осуществлять процесс фотосинтеза и содержат особые компоненты хлоропласты. Это пластиды зеленого оттенка, содержащие вещество хлорофилл.

С его участием энергия света преобразуется в энергию химических связей органических веществ.

Интересно! Хлоропласты в большом объеме сосредоточены главным образом в надземной части растений зелёных плодах и листьях.

Если вам зададут вопрос: назовите важную особенность строения органических соединений клетки, то ответ можно дать следующий.

  • многие из них содержат атомы углерода, которые обладают различными химическими и физическими свойствами, а также способны соединяться друг с другом,
  • являются носителями, активными участниками разнообразных процессов, протекающих в организмах, либо являются их продуктами. Имеются ввиду гормоны, разные ферменты, витамины,
  • могут образовывать цепи и кольца, что обеспечивает многообразие соединений,
  • разрушаются при нагревании и взаимодействии с кислородом,
  • атомы в составе молекул объединяются друг с другом с помощью ковалентных связей, не разлагаются на ионы и потому медленно взаимодействуют, реакции между веществами протекают очень долго по нескольку часов и даже дней.

Строение хлоропласт

Ткани

Клетки могут существовать по одной, как в одноклеточных организмах, но чаще всего они объединяются в группы себе подобных и образуют различные тканевые структуры, из которых и состоит организм. В теле человека существует несколько видов тканей:

  • эпителиальная – сосредоточена на поверхности кожных покровов, органов, элементов пищеварительного тракта и дыхательной системы,
  • мышечная мы двигаемся благодаря сокращению мышц нашего тела, осуществляем разнообразные движения: от простейшего шевеления мизинцем, до скоростного бега. Кстати, биение сердца тоже происходит за счёт сокращения мышечной ткани,
  • соединительная ткань составляет до 80 процентов массы всех органов и играет защитную и опорную роль,
  • нервная образует нервные волокна. Благодаря ей по организму проходят различные импульсы.

Соединительная ткань

Процесс воспроизводства

На протяжении всей жизни организма происходит митоз – так называют процесс деления, состоящий из четырёх стадий:

  1. Профаза. Две центриоли клетки делятся и направляются в противоположные стороны. Одновременно с этим хромосомы образуют пары, а оболочка ядра начинает разрушаться.
  2. Вторая стадия получила название метафазы. Хромосомы располагаются между центриолями, постепенно внешняя оболочка ядра полностью исчезает.
  3. Анафаза является третьей стадией, на протяжении которой продолжается движение центриолей в противоположном друг от друга направлении, а отдельные хромосомы также следуют за центриолями и отодвигаются друг от друга. Начинает сжиматься цитоплазма и вся клетка.
  4. Телофаза – окончательная стадия. Цитоплазма сжимается до тех пор, пока не появятся две одинаковые новые клетки. Формируется новая мембрана вокруг хромосом и появляется одна пара центриолей у каждой новой клетки.

Интересно! Клетки у эпителия делятся быстрее, чем у костной ткани. Все зависит от плотности тканей и других характеристик. Средняя продолжительность жизни основных структурных единиц составляет 10 дней.

Строение клетки

Строение клетки. Строение и функции клетки. Жизнь клетки.

Вывод

Вы узнали каково строение клетки самой важной составляющей организма. Миллиарды клеток составляют удивительно мудро организованную систему, которая обеспечивает работоспособность и жизнедеятельность всех представителей животного и растительного мира.

Источник: https://tvercult.ru/nauka/iz-chego-sostoit-kletka-cheloveka-stroenie-i-funktsii

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: