Строение молекулы днк и рнк таблица

Содержание
  1. Строение, свойства и функции нуклеиновых кислот
  2. Самоудвоение молекулы ДНК
  3. Типы РНК и их функции
  4. Химическое строение и роль АТФ в энергетическом обмене
  5. Днк (дезоксирибонуклеиновая кислота)
  6. Строение ДНК
  7. Строение нуклеотидов в молекуле ДНК
  8. Уровни структуры ДНК
  9.  Правило Чаргаффа
  10. Модель ДНК Уотсона-Крика
  11. Интересные факты о ДНК
  12. Нуклеиновые кислоты – виды, строение и функции
  13. Нуклеиновые кислоты и их строение
  14. Функции нуклеотидов
  15. Значение ДНК
  16. Свойства РНК
  17. История исследований
  18. 2.3.4. Органические вещества клетки. Нуклеиновые кислоты
  19. Дезоксирибонуклеиновая кислота (ДНК)
  20. Рибонуклеиновая кислота (РНК)
  21. Аденозинтрифосфорная кислота – АТФ
  22. Часть А
  23. Часть В
  24. Часть  С
  25. Сравнение ДНК и РНК: таблица. ДНК и РНК: структура
  26. Нуклеиновая кислота: что это такое?
  27. Сходства и различия ДНК и РНК: пентозы
  28. Принципы строения ДНК
  29. Виды и особенности строения РНК
  30. Какие функции выполняет ДНК?
  31. Какие функции выполняет РНК?
  32. Выводы и сравнительная таблица

Строение, свойства и функции нуклеиновых кислот

Строение молекулы днк и рнк таблица

Нуклеиновые кислоты – фосфосодержащие биополимеры живых организмов, обеспечивающие сохранение и передачу наследственной информации.

Макромолекулы нуклеиновых кислот открыл в 1869 г. Швейцарский химик Ф. Мишер в ядрах лейкоцитов, обнаруженных в навозе. Позже нуклеиновые кислоты выявили во всех клетках растений и животных, грибов, в бактериях и вирусах.

Замечание 1

Существует два вида нуклеиновых кислот – дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).

Как видно из названий, молекула ДНК содержит пентозный сахар дезоксирибозу, а молекула РНК – рибозу.

Сейчас известно большое количество разновидностей ДНК и РНК, которые отличаются друг от друга строением и значением в метаболизме.

Пример 1

В бактериальной клетке кишечной палочки содержится около 1000 разновидностей нуклеиновых кислот, а у животных и растений – ещё больше.

Каждому виду организмов характерен свой собственный набор этих кислот.ДНК локализируется преимущественно в хромосомах клеточного ядра (% всей ДНК клетки), а также в хлоропластах и митохондриях. РНК содержится в цитоплазме, ядрышках, рибосомах, митохондриях, пластидах.

  • Курсовая работа 490 руб.
  • Реферат 220 руб.
  • Контрольная работа 230 руб.

Состоит молекула ДНК из двух полинуклеотидных цепей, спирально закрученных относительно друг друга. Цепы расположены антипараллельно, то есть 3́-конец и 5́-конец.

Структурными компонентами (мономерами) каждой такой цепи являются нуклеотиды. В молекулах нуклеиновых кислот количество нуклеотидов различно – от 80 в молекулах транспортных РНК до нескольких десятков тысяч в ДНК.

Любой нуклеотид ДНК содержит одно из четырёх азотистых оснований (аденин, тимин, цитозин и гуанин), дезоксирибозу и остаток фосфорной кислоты.

Замечание 2

[attention type=yellow]

Нуклеотиды отличаются лишь азотистыми основаниями, между которыми существуют родственные связи. Тимин, цитозин и урацил относятся к пиримидиновым, а аденин и гуанин – к пуриновым основаниям.

[/attention]

Соседние нуклеотиды в полинуклеотидной цепи связаны ковалентными связями, образующимися между дезоксирибозой молекулы ДНК (или рибозой РНК) одного нуклеотида и остатком фосфорной кислоты другого.

Замечание 3

Хотя в молекуле ДНК только четыре типа нуклеотидов, но благодаря изменению последовательности их расположения в длинной цепи молекулы ДНК достигают огромного разнообразия.

Две полинуклеотидные цепи объединяются в единую молекулу ДНК с помощью водородных связей, которые образуются между азотистыми основаниями нуклеотидов разных цепей.

При этом аденин (А) способен соединяться только с тимином (Т), а гуанин (Г) – только с цитозином (Ц).

В результате у различных организмов количество адениловых нуклеотидов равно количеству тимидиловых, а количество гуаниловых – количеству цитидиловых. Такая закономерность называется «правило Чаргаффа».

Таким образом определяется последовательность нуклеотидов в одной цепи согласно их последовательность в другой.

Такая способность нуклеотидов к выборочному соединению называется комплементарностью, и это свойство обеспечивает образование новых молекул ДНК на основании исходной молекулы (репликация).

Замечание 4

[attention type=red]

Двойная спираль стабилизируется многочисленными водородными связями (две образуются между А и Т, три – между Г и Ц) и гидрофобными взаимодействиями.

[/attention]

Диаметр ДНК составляет 2 нм, шаг спирали – 3,4 нм, а в каждом витке содержится 10 пар нуклеотидов.

Длина молекулы нуклеиновых кислот достигает сотни тысяч нанометров. Это значительно превышает наибольшую макромолекулу белка, длина которой в развёрнутом виде не больше 100 – 200 нм.

Самоудвоение молекулы ДНК

Каждому клеточному делению при условии абсолютно чёткого соблюдения нуклеотидной последовательности предшествует репликация молекулы ДНК.

Начинается она с того, что временно раскручивается двойная спираль ДНК. Это происходит под действием ферментов ДНК-топоизомеразы и ДНК-геликазы. ДНК-полимераза и ДНК-праймаза катализируют полимеризацию нуклеозидтрифосфатов и образование новой цепи.

Точность репликации обеспечивается комплементарным (А – Т, Г – Ц) взаимодействием азотистых оснований матричной цепи, которая строится.

Замечание 5

Каждая полинуклеотидная цепь является матрицей для новой комплементарной цепи. В результате образуются две молекулы ДНК, одна половина каждой из которых происходит от материнской молекулы, а другая является заново синтезированной.

Причём синтезируются новые цепи сначала в виде коротких фрагментов, а потом специальным ферментом эти фрагменты «сшиваются» в длинные цепи.

Две образовавшиеся новые молекулы ДНК являются точной копией исходной молекулы благодаря репликации.

Этот процесс является основой для передачи наследственной информации, которая осуществляющейся на клеточном и организменном уровнях.

Замечание 6

Важнейшая особенность репликации ДНК – её высокая точность, которую обеспечивает специальный комплекс белков – «репликационная машина».

Функции «репликационной машины»:

  • продуцирует углеводы, образующие комплементарную пару с нуклеотидами материнской матричной цепи;
  • выступает катализатором при образовании ковалентной связи между концом растущей цепи и каждым новым нуклеотидом;
  • корректирует цепь, удаляя нуклеотиды, которые неправильно включились.

Число ошибок «репликационной машины» составляет очень малую величину, менее одной ошибки на 1 млрд. нуклеотидов.

Однако бывают случаи, когда «репликационная машина» может пропустить или вставить несколько лишних оснований, включить Ц вместо Т или А вместо Г.

[attention type=green]

Каждая такая замена последовательности нуклеотидов в молекуле ДНК является генетической ошибкой и называется мутацией.

[/attention]

Во всех последующих поколениях клеток такие ошибки будут снова воспроизводиться, что может привести к заметным негативным последствиям.

Типы РНК и их функции

РНК представляет из себя одну полинуклеотидную цепь (у некоторых вирусов две цепи).

Мономерами являются рибонуклеотиды.

Азотистые основания в нуклеотидах:

  • аденин (А);*
  • гуанин (Г);
  • цитозин (Ц);
  • урацил (У).*

Моносахарид – рибоза.

В клетке локализируется в ядре (ядрышке), митохондриях, хлоропластах, рибосомах, цитоплазме.

Синтезируется путём матричного синтеза по принципу комплементарности на одной из цепей ДНК, не способна к репликации (самоудвоению), лабильна.

Существуют различные типы РНК, которые отличаются по величине молекул, структуре, расположением в клетке и функциям.

Низкомолекулярные транспортные РНК (тРНК) составляют около 10% общего количества клеточной РНК.

В процессе передачи генетической информации каждая тРНК может присоединить и перенести лишь определённую аминокислоту (например, лизин) к рибосомам – месту синтеза белка. Но для каждой аминокислоты есть более одной тРНК. Потому существует намного больше 20 различных тРНК, которые отличаются по своей первичной структуре (имеют различную последовательность нуклеотидов).

Рибосомальные РНК (рРНК) составляют до 85% всех РНК клетки. Входя в состав рибосом они выполняют тем самым структурную функцию. Также рРНК берут участие в формировании активного центра рибосомы, где в процессе биосинтеза белка образуются пептидные связи между молекулами аминокислот.

С участием информационных, или матричных, РНК (иРНК) программируется синтез белков в клетке.

[attention type=yellow]

Хотя их содержание в клетке относительно низкое – около 5% – от общей массы всех РНК клетки, по своему значению иРНК стоят на первом месте, поскольку они непосредственно осуществляют передачу кода ДНК для синтеза белков. При этом каждый белок клетки кодирует специфическая иРНК.

[/attention]

Объясняется это тем, что РНК во время своего синтеза получают информацию от ДНК о структуре белка в виде скопированной последовательности нуклеотидов и для обработки и реализации переносят её к рибосоме.

Замечание 7

Значение всех типов РНК состоит в том, что они являются функционально объединённой системой, направленной на осуществление в клетке синтеза специфических для неё белков.

Химическое строение и роль АТФ в энергетическом обмене

Аденозинтрифосфорная кислота (АТФ) содержится в каждой клетке – в гиалоплазме (растворимой фракции цитоплазмы), митохондриях, хлоропластах и ядре.

Она обеспечивает энергией большинство реакций, происходящих в клетке. С помощью АТФ клетка способна двигаться, синтезировать новые молекулы белков, жиров и углеводов, избавляться от продуктов распада, осуществлять активный транспорт и т.п.

Молекула АТФ образована азотистым основанием, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ между собой соединены высокоэнергетическими (макроэргическими) связями.

В результате гидролитического отщепления конечной фосфатной группы образуется аденозиндифосфорная кислота (АДФ) и освобождается энергия.

После отщепления второй фосфатной группы образуется аденозинмонофосфорная кислота (АМФ) и высвобождается ещё одна порция энергии.

АТФ образуется из АДФ и неорганического фосфата за счёт энергии, которая освобождается во время окисления органических веществ и в процессе фотосинтеза. Называется этот процесс называется фосфориллированием. При этом должно быть использовано не менее 40 кДж/моль АТФ, аккумулированной в её макроэргических связях.

Значит, основное значение процессов дыхания и фотосинтеза состоит в том, что они поставляют энергию для синтеза АТФ, при участии которой в клетке происходит значительное количество различных процессов.

АТФ чрезвычайно быстро восстанавливается.ПримерУ человека каждая молекула АТФ расщепляется и снова возобновляется 2400 раз на сутки, потому средняя длительность её жизни менее 1 мин.

[attention type=red]

Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах. АТФ, которая образовалась, по каналах эндоплазматического ретикуллюма поступает в те участки клетки, где необходима энергия.

[/attention]

Любые виды клеточной активности происходят за счёт энергии, которая освобождается во время гидролиза АТФ. Оставшаяся энергия (около 50%), которая освобождается во время расщепления молекул белков, жиров, углеводов и других органических соединений, рассеивается в виде тепла рассеивается и практически существенного значения для жизнедеятельности клетки не имеет.

Источник: https://spravochnick.ru/biologiya/himiya_zhizni/stroenie_svoystva_i_funkcii_nukleinovyh_kislot/

Днк (дезоксирибонуклеиновая кислота)

Строение молекулы днк и рнк таблица

ДНК (дезоксирибонуклеиновая кислота) — это линейный органический полимер, мономерными звеньями которого являются нуклиатиды.

Вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале. Основу генетического материала организма составляет дезоксирибонуклеиновая кислота (ДНК).

ДНК большинства организмов – это длинная двухцепочечная полимерная молекула.

 Последовательность мономерных звеньев (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой.

Принцип комплементарности обеспечивает синтез новых молекул ДНК, идентичных исходным, при их удвоении (репликации).

Участок молекулы ДНК, кодирующий определенный признак, – ген.

Гены – это индивидуальные генетические элементы, имеющие строго специфичную нуклеотидную последовательность, и кодирующие определенные признаки организма. Одни из них кодируют белки,  другие — только молекулы РНК.

Информация, которая содержится в генах, кодирующих белки (структурных генах), расшифровывается в ходе двух последовательных процессов:

  • синтеза РНК (транскрипции): на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК).
  • синтеза белка (трансляции): В ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы.

Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы определяет ее структуру и функции.

Строение ДНК

ДНК – это линейный органический полимер. Его мономерные звенья – нуклеотиды, которые, в свою очередь, состоят из:

  • азотистого основания;
  • пятиуглеродного сахара (пентозы);
  • фосфатной группы (рисунок 1).Рисунок 1 : ДНК – строение одной цепочки нуклеотидов

При этом,  фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка,  а  органическое основание — к 1′-атому.

Основания в ДНК бывают двух типов:

  • Пуриновые: аденин ( А ) и гуанин (G);
  • Пиримидиновые: цитозин (С) и тимин (Т);(рисунок 2),Рисунок 2: Азотистые основания- пуриновые и пиримидиновые

Строение нуклеотидов в молекуле ДНК

В ДНК моносахарид представлен  2′-дезоксирибозой, содержащей только 1 гидроксильную группу (ОН),  а  в РНКрибозой, имеющей 2 гидроксильные группы(OH).

Нуклеотиды соединены друг с другом фосфодиэфирными связями, при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец),  а  на другом — 5′-фосфатная группа (5′-конец).

Уровни структуры ДНК

Принято выделять 3 уровня структуры ДНК:

  • первичную;
  • вторичную;
  • третичную.

Первичная структура  ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.

Вторичная структура ДНК стабилизируется  водородными связями между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек,  закрученных вправо вокруг одной оси.

Общий виток спирали- 3,4нм, расстояние между цепочками 2нм.

Третичная структура ДНК – суперсперализация ДНК.

Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов.

Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет  8 см,  а в форме суперспирали укладывается в 5 нм.

 Правило Чаргаффа

Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:

  1. У ДНК молярные доли пуриновых и пиримидиновых оснований равны: А+ G = C + Т  или (А + G)/(C + Т)=1.
  2. В ДНК количество оснований с аминогруппами (А +C) равно количеству оснований с кетогруппами (G + Т):   А +C= G + Т или (А +C)/(G + Т)= 1
  3. Правило эквивалентности, то есть : А=Т, Г=Ц; А/Т = 1;  Г/Ц=1.
  4. Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности: (Г+Ц)/(А+Т). У высших растений и животных коэффициент специфичности меньше 1, и колеблется незначительно: от 0,54 до 0,98, у микроорганизмов он больше 1.

Модель ДНК Уотсона-Крика

Б 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).

Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей (рисунок 3).

При этом аденин образует пару только с тимином,  а  гуанин — с цитозином.

Пара оснований  А—Т  стабилизируется двумя водородными связями,  а  пара G—Стремя.

Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п.н.). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н.

Сахарофосфатный остов молекулы, который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’—З’-фосфодиэфирными связями, образует «боковины винтовой лестницы»,  а  пары оснований  А—Т  и G—С — ее ступеньки (рисунок 3).

Рисунок 3: Модель ДНК Уотсона-Крика

Цепи молекулы ДНК антипараллельны: одна из них имеет направление 3’→5′, другая 5’→3′.

В соответствии с принципом комплементарности, если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′, то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′. В этом случае двухцепочечная форма будет выглядеть следующим образом:

  • 5′-TAGGCAT-3′
  • 3-ATCCGTA-5′.

В такой записи 5′-конец верхней цепи всегда располагают слева,  а  3′-конец — справа.

Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул.

Модель ДНК Уотсона—Крика полностью отвечает этим требованиям, так как:

  • согласно принципу комплементарности каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Следовательно, после одного раунда репликации образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК.
  • нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка.

Интересные факты о ДНК

  1. Одна молекула ДНК человека вмещает порядка 1,5 гигабайта информации. При этом, ДНК всех клеток человеческого организма занимают 60 млрд. терабайт, что сохраняются на 150-160 граммах ДНК. [2]
  2. Международный день ДНК отмечается 25 апреля.

    Именно в этот день в 1953 году Джеймс Уотсон и Фрэнсис Крик опубликовали в журнале Nature свою статью под названием «Молекулярная структура нуклеиновых кислот», где описали двойную спираль молекулы ДНК. [3]

Список литературы: Молекулярная биотехнология: принципы и применение, Б.

Глик, Дж. Пастернак, 2002 год
Б.Глик,
Дж. Пастернак,
Источник: Молекулярная биотехнология: принципы и применение, Б.Глик, Дж. Пастернак, 2002 год
[2] MPlast.

by – портал: “ДНК 1 клетки человека вмещает 1,5 гигабайта информации – лучший винчестер на планете” – 27 апреля 2016 года
[3] Журнал NATURE: “Molecular Structure of Nucleic Acids” – 25 апреля 1953 года
Дата в источнике: 2002 год

Источник: https://mplast.by/encyklopedia/dnk-dezoksiribonukleinovaya-kislota/

Нуклеиновые кислоты – виды, строение и функции

Строение молекулы днк и рнк таблица

В природе существует два вида нуклеиновых кислот — рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). Основанием каждой из них является азотистое основание, остаток фосфорной кислоты и пятиуглеродный сахар.

В состав ДНК входит четыре разновидности нуклеотидов, отличие которых заключается в азотистом соединении:

  • А — аденин;
  • Т — тимин;
  • Ц — цитозин;
  • Г — гуанин.

Что касается РНК, то они тоже имеют несколько видов в зависимости от азотистого основания:

  • У — урацилом;
  • Ц — цитозин;
  • Г — гуанин;
  • А — аденин.

Поговорим и о физических свойствах нуклеотидов. Они легко растворяются в воде, но при этом практически нерастворимы в растворителях, имеющих органическое происхождение. Очень восприимчивы к температурным перепадам, а также критическим показателям значения уровня рН.

Молекулы ДНК обладают весомой молекулярной массой, благодаря чему могут фрагментироваться в результате механического воздействия.

Нуклеиновые кислоты и их строение

Прежде всего необходимо узнать, что нуклеотидами являются мономеры нуклеиновых кислот. Они соединены между собой линейно, формируя длинные молекулярные соединения нуклеиновых кислот. Самыми длинными полимерами являются цепочки молекул ДНК. Как правило, длина молекул РНК значительно меньше, но при этом может отличаться (зависит от типа).

При формировании полинуклеотидного соединения остатки фосфорной кислоты взаимодействуют с трехатомным углеродом пентозы. Аналогичная связь формируется между фосфорной кислотой и пятиатомным углеродом сахара непосредственно в нуклеиновой кислоте.

Исходя из этого, индивидуальная характеристика нуклеиновой кислоты — это последовательность пентозы с мостиками фосфорных кислот. Азотистые основания отделяются по сторонам.

Стоит добавить, что молекулы ДНК не только длиннее в сравнении с РНК, но и состоят из нескольких цепей, которые соединены между собой химически водородными связями. Такие структурные связи формируются по принципу комплементарности: гуанин комплементарен цитозину, а аденин — тимину.

Нуклеотиды содержат в себе такие вещества:

Нуклеотиды Остаток фосфорной кислоты Соединения азота Пятиуглеродный сахар
РНК + Рибоза
ДНК + Дезоксирибоза

Образоваться такие связи могут и в структурах РНК, но водородные связи формируются между нукленовыми кислотами одной цепи.

Функции нуклеотидов

Местонахождение в клетках аминокислот, белка и нуклеотидов поддерживает их жизнедеятельность, а также сохранение, передачу и верную реализацию генетической наследственности. Стоит в отдельности рассмотреть функции ДНК, РНК и их разновидностей в жизни живых организмов.

Значение ДНК

В клетках ДНК вся информация в основном сосредоточена в ядре клетки.

Бактериальная среда, как правило, в формуле занимает одну кольцевую молекулу, находится в неправильной формы образовании в цитоплазме, именуемым нуклеотидом.

Гены, входящие в состав наследственной информации генома, являются единицей передачи генетической наследственности. Признак частицы — открытая рама считывания.

  1. Самая важная биологическая функция вида — генетическая, клетка является носителем генетической информации (благодаря этой особенности, каждый вид на планете обладает своими индивидуальными особенностями).
  2. Наследственную информацию ДНК способно передавать в ряду целых поколений не без дополнительного участия и РНК.
  3. Осуществляет процессы регуляции биосинтеза белка.

Хранение и передача информации (генетической предрасположенности) осуществляется за счет биосинтеза белка посредством и-РНК, т-РНК.

Свойства РНК

В природе различают три разновидности РНК, каждая из которых предназначена для выполнения особой роли в осуществлении синтеза белка.

  1. Транспортная предназначена для транспортировки активированных аминокислот по организму к рибосомам. Это необходимо для осуществления синтеза полипептидных молекул. Исследования показали, что одна транспортная молекула способна связаться лишь с одной из 20 аминокислот. Они служат в качестве транспортировщиков специфических аминокислот и углеводов. Длина транспортной цепи значительно короче матричной, в состав входит приблизительно 80 нуклеотидов, визуально имеет вид клеверного листа.
  2. Матричная занимается копированием наследственного кода из ядра в цитоплазму. За счет этого процесса осуществляется синтез разнообразных белков. Схема строения представляет собой одноцепочную молекулу, она является неотъемлемой составляющей цитоплазмы. В составе молекулы содержится до нескольких тысяч нуклеотидов, они занимаются транспортировкой наследственной информации через мембрану ядра к очагу синтеза на рибосоме. Копирование информации осуществляется посредством транскрипции.
  3. Рибосомная задействует около 73 белков для формирования рибосом. Они собой представляют клеточные органеллы, на которых осуществляется сбор полипептидных молекул. Основные задачи рибосомной молекулы — это формирование центра рибосомы (активного); неотъемлемый структурный элемент рибосом, обеспечивающий их правильное функционирование; первоначальное взаимодействие рибосомы с кодоном-инициатором для выявления рамки считывания; обеспечение взаимодействия рибосомных молекул с транспортными.

История исследований

На протяжении десятилетий ведущие ученые мира занимались исследованием нуклеотидов. Рассмотрим более подробно историю изучения нуклеотидов.

  • Из экстракта мышц быка в 1847 году было изъято вещество, которое в скором было названо «инозиновая кислота». Это вещество и стало первым изученным в мире нуклеотидом. В течение нескольких последующих десятилетий ученые занимались изучением его химического строения.
  • Немного позднее швейцарским выдающимся химиком было открыто новое вещество, в составе которого содержался фосфор. Вещество не разрушалось под действием ферментов протеолитов. Также ему были свойственны выраженные кислотные свойства. Вещество было названо «нуклеин».
  • Рихард Альтман в 1889 году ввел в науку термин «нукленовая кислота», а также изобрел способ извлечения нуклеотидов, в составе которого отсутствуют белковые примеси.
  • В 40-х годах XX века научная группа под руководством Тодда Александера проводила масштабные синтетические лабораторные исследования в области нуклеозидов и нуклеотидов. Результат их опытов — изучение всех деталей стереохимии и химического строения нуклеотидов. Благодаря этим работам, выдающийся ученый в 1958 года был награжден Нобелевской премией в области химии.
  • Чаргаффом в 1951 году была выявлена закономерность содержания в кислотах нуклеотидов разных видов. Впоследствии результаты исследований получили название Правила Чаргаффа.
  • Несколькими годами позднее была подтверждена вторичная структура ДНК. Двойную спираль открыли биологи и химики Крик и Уотсон.

Нуклеотиды — это неотъемлемая составляющая каждой клетки живого организма, обеспечивающая ее жизнедеятельность, а также хранение, транспортировку и реализацию наследственной (генетической) наследственности. Ученые посвятили годы изучению видов и строения молекул, что открывает перед человеком большие возможности.

Источник: https://nauka.club/biologiya/nukleinovye-kisloty.html

2.3.4. Органические вещества клетки. Нуклеиновые кислоты

Строение молекулы днк и рнк таблица

Нуклеиновые кислоты были открыты в 1868 г. швейцарским ученым Ф. Мишером. В организмах существует несколько видов нуклеиновых кислот, которые встречаются в различных органоидах клетки – ядре, митохондриях, пластидах.

К нуклеиновым кислотам относятся ДНК, и-РНК, т-РНК, р-РНК.

Дезоксирибонуклеиновая кислота (ДНК)

  – линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных (соответствующих друг другу по конфигурации) цепей. Пространственная структура молекулы ДНК была смоделирована американскими учеными Джеймсом Уотсоном и Френсисом Криком в 1953 г.
Мономерами ДНК являются нуклеотиды.

Каждый нуклеотидДНК состоит из пуринового (А – аденин или Г – гуанин) или пиримидинового (Т – тимин или Ц – цитозин) азотистого основания, пятиуглеродного сахара  – дезоксирибозы и фосфатной группы.

Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина – цитозин. Пара А – Т соединена двумя водородными связями, а пара Г – Ц – тремя.

При репликации (удвоении) молекулы ДНК водородные связи рвутся и цепи расходятся и на каждой из них синтезируется новая цепь ДНК. Остов цепей ДНК образован сахарофосфатными остатками.
Последовательность нуклеотидов в молекуле ДНК определяет ее специфичность, а также специфичность белков организма, которые кодируются этой последовательностью.

Эти последовательности индивидуальны и для каждого вида организмов, и для отдельных особей.
Пример: дана последовательность нуклеотидов ДНК: ЦГА – ТТА – ЦАА.На информационной РНК (и-РНК) будет синтезирована цепь ГЦУ – ААУ – ГУУ, в результате чего выстроится цепочка аминокислот: аланин – аспарагин – валин.

При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а, следовательно изменится и белок, кодируемый данным геном. Изменения в составе нуклеотидов или их последовательности называются мутацией.

Рибонуклеиновая кислота (РНК)

  – линейный полимер, состоящий из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар – рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.
Синтезируются РНК в ядре.

Процесс называется транскрипция — это биосинтез молекул РНК на соответствующих участках ДНК; первый этап реализации генетической информации в клетке, в процессе которого последовательность нуклеотидов ДНК «переписывается» в нуклеотидную последовательность РНК.

 
Молекулы РНК формируются на матрице, которой служит одна из цепей ДНК, последовательность нуклеотидов в которой определяет порядок включения рибонуклеотидов по принципу комплементарности. РНК-полимераза, продвигаясь вдоль одной из цепей ДНК, соединяет нуклеотиды в том порядке, который определен матрицей. Образовавшиеся молекулы РНК называют транскриптами.

 
Виды РНК.
Матричная   или информационная  РНК. Синтезируется в ядре при участии фермента РНК-полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Ее функция – снятие информации с ДНК и передача ее к месту синтеза белка – на рибосомы. Составляет 5% РНК клетки.
Рибосомная РНК  – синтезируется в ядрышке и входит в состав рибосом.

Составляет 85% РНК клетки.
Транспортная РНК – транспортирует аминокислоты к месту синтеза белка. Имеет форму клеверного листа и состоит из 70—90 нуклеотидов.

Аденозинтрифосфорная кислота – АТФ

– представляет собой нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты, в двух из которых запасается большое количество энергии.

При отщеплении одного остатка фосфорной кислоты освобождается 40 кДж/моль энергии.  Способность запасать такое количество энергии делает АТФ ее универсальным источником.

Синтез АТФ происходит в основном в митохондриях.

Часть А

А1. Мономерами ДНК и РНК являются1) азотистые основания 2) фосфатные группы 3) аминокислоты 4) нуклеотиды

А2. Функция информационной РНК:

1) удвоение информации                            2) снятие информации с ДНК3) транспорт аминокислот на рибосомы   4) хранение информации

А3. Укажите вторую цепь ДНК, комплементарную первой: АТТ – ГЦЦ – ТТГ

1) УАА – ТГГ – ААЦ          3) УЦЦ – ГЦЦ – АЦГ2) ТАА – ЦГГ – ААЦ          4) ТАА – УГГ – УУЦ

А4. Подтверждением гипотезы, предполагающей, что ДНК является генетическим материалом клетки, служит:

1) количество нуклеотидов в молекуле2) индивидуальность ДНК3) соотношение азотистых оснований (А = Т, Г= Ц)4) соотношение ДНК в гаметах и соматических клетках (1:2)

А5. Молекула ДНК способна передавать информацию благодаря:

1) последовательности нуклеотидов 2) количеству нуклеотидов3) способности к самоудвоению        4) спирализации молекулы

А6. В каком случае правильно указан состав одного из нуклеотидов РНК

1) тимин – рибоза – фосфат   2) урацил – дезоксирибоза – фосфат3) урацил – рибоза – фосфат

4) аденин – дезоксирибоза – фосфат

Часть В

В1. Выберите признаки молекулы ДНК1) Одноцепочная молекула  2) Нуклеотиды – АТУЦ3) Нуклеотиды – АТГЦ        4) Углевод – рибоза5) Углевод – дезоксирибоза 6) Способна к репликации

В2. Выберите функции, характерные для молекул РНК эукариотических клеток

1) распределение наследственной информации2) передача наследственной информации к месту синтеза белков3) транспорт аминокислот к месту синтеза белков4) инициирование репликации ДНК5) формирование структуры рибосом

6) хранение наследственной информации

Часть  С

С1. Установление структуры ДНК позволило решить ряд проблем. Какие, по вашему мнению, это были проблемы и как они решились в результате этого открытия?
С2. Сравните нуклеиновые кислоты по составу и свойствам.

Источник: https://biology100.ru/index.php/materialy-dlya-podgotovki/kletka-kak-biologicheskaya-sistema/2-3-4-organicheskie-veshchestva-kletki-nukleinovye-kisloty

Сравнение ДНК и РНК: таблица. ДНК и РНК: структура

Строение молекулы днк и рнк таблица

В предложенной вашему вниманию статье мы предлагаем изучить и построить сравнительную таблицу ДНК и РНК. Для начала необходимо сказать, что есть специальный раздел биологии, который занимается вопросами хранения, реализации и передачи наследственной информации, его название – молекулярная биология. Именно эту область мы и затронем далее.

Речь пойдет о полимерах (высокомолекулярных органических соединениях), образованных из нуклеотидов, которые и имеют название – нуклеиновые кислоты.

Эти соединения выполняют очень важные функции, одна из которых – хранение информации об организме.

Для того чтобы сравнить ДНК и РНК (таблица будет представлена в самом конце статьи), необходимо знать, что всего выделяют два вида нуклеиновых кислот, участвующих в биосинтезе белка:

  • дезоксирибонуклеиновую, которую мы чаще встречаем в виде аббревиатуры – ДНК;
  • рибонуклеиновую (или сокращенно, РНК)

Нуклеиновая кислота: что это такое?

Для того чтобы составить таблицу сравнения ДНК и РНК, необходимо более подробно познакомиться с данными полинуклеотидами. Начнем с общего вопроса. И ДНК, и РНК – это нуклеиновые кислоты. Как говорилось ранее, они образуются из остатков нуклеотидов.

Эти полимеры можно обнаружить абсолютно в любой клеточке организма, так как именно на их плечи возложена большая обязанность, а именно:

  • хранение;
  • передача;
  • реализация наследственности.

Теперь очень коротко осветим основные их химические свойства:

  • хорошо растворяются в воде;
  • практически не поддаются растворению в органических растворителях;
  • чувствительны к изменениям температуры;
  • если молекулу ДНК выделить каким-либо возможным образом из природного источника, то можно наблюдать фрагментацию при механических действиях;
  • фрагментирование происходит ферментами под названием нуклеазы.

Сходства и различия ДНК и РНК: пентозы

В таблице сравнения ДНК и РНК важно отметить одно очень важное сходство между ними – наличие в составе моносахаридов. Важно заметить, что каждая нуклеиновая кислота имеет отдельные их формы. Деление нуклеиновых кислот на ДНК и РНК происходит в результате того, что они обладают различными пентозами.

Так, например, в составе ДНК мы можем обнаружить дезоксирибозу, а в РНК – рибозу. Обратите внимание на тот факт, что при втором атоме углерода в дезоксирибозе нет кислорода. Ученые сделали следующее предположение – отсутствие кислорода имеет следующее значение:

  • оно укорачивает связи С2 и С3;
  • добавляет прочности молекуле ДНК;
  • создает условия для укладки массивной молекулы в ядре.

Итак, всего выделяют пять азотистых оснований:

  • А (аденин);
  • Г (гуанин);
  • Ц (цитозин);
  • Т (тимин);
  • У (урацил).

Важно отметить, что именно эти крошечные частички являются кирпичиками наших молекул. Именно в них заключена вся генетическая информация, а если быть более точными, то в их последовательности. В ДНК мы можем встретить: А, Г, Ц и Т, а в РНК – А, Г, Ц и У.

Азотистые основания – это большая часть нуклеиновых кислот. Помимо пяти перечисленных, встречаются и другие, но это бывает крайне редко.

Принципы строения ДНК

Еще одна важная особенность – наличие четырех уровней организации (вы сможете это увидеть на картинке). Как уже стало понятно, первичная структура – это цепочка нуклеотидов, при этом соотношение азотистых оснований подчиняется некоторым законам.

Вторичная структура – двойная спираль, состав каждой цепи которой специфичен для вида. Остатки фосфорной кислоты мы можем обнаружить снаружи спирали, а азотистые основания располагаются внутри.

Далее идет суперспирализованная структура. Помимо сплетения двух цепей, они наматываются на гистоны (для большей компактности). Гистоны – это специальные белки, которые делятся на пять классов.

[attention type=green]

Последним уровнем выступает хромосома. Представьте, что Эйфелева башня помещается в спичечный коробок, вот так уложена молекула ДНК в хромосоме. Важно заметить еще и то, что хромосома может состоять из одной хроматиды или двух.

[/attention]

Поговорим, прежде чем составить таблицу сравнения ДНК и РНК, о структуре РНК.

Виды и особенности строения РНК

Для сравнения сходства ДНК и РНК (таблицу вы сможете увидеть в последнем параграфе статьи), разберем разновидности последних:

  1. Прежде всего, тРНК (или транспортная) – одноцепочная молекула, которая выполняет функции транспортировки аминокислот и синтеза белка. Ее вторичной структурой является “клеверный лист”, а третичная изучена крайне мало.
  2. Информационная или матричная (мРНК) – перенос информации от молекулы ДНК к месту синтеза белка.
  3. И последняя – рРНК (рибосомная). Как уже стало понятно из названия, содержится в рибосомах.

Какие функции выполняет ДНК?

Сравнивая ДНК и РНК, невозможно упустить вопрос выполняемых функций. В итоговой таблице эта информация обязательно будет отражена.

Итак, не сомневаясь ни секунды, мы можем утверждать, что в маленькой молекуле ДНК запрограммирована вся генетическая информация, способная контролировать каждый наш шаг. Сюда относятся:

  • здоровье;
  • развитие;
  • продолжительность жизни;
  • наследственные болезни;
  • сердечно-сосудистые заболевания и пр.

Представьте, что мы выделили все молекулы ДНК из одной клетки человеческого организма и разложили их в ряд. Как вы думаете, какая длина цепочки получится? Многие подумают, что миллиметры, но это не так.

Длина данной цепи будет составлять целых 7,5 сантиметров. Невероятно, но почему мы тогда клетку не можем разглядеть без мощного микроскопа? Все дело в том, что молекулы очень сильно спрессованы.

Вспомните, мы в статье уже говорили о размерах Эйфелевой башни.

А какие же все-таки функции выполняют ДНК?

  1. Являются носителями генетической информации.
  2. Воспроизводят и передают информацию.

Какие функции выполняет РНК?

Для более точного сравнения ДНК и РНК, предлагаем рассмотреть функции, выполняемые вторыми. Ранее уже говорилось, что выделяется три типа РНК:

  • РРНК выполняет функцию структурной основы рибосомы, помимо этого они взаимодействуют с другими видами РНК в процессе синтеза белка и принимают участие при сборке полипептидной цепи.
  • Функция мРНК – матрица для биосинтеза белка.
  • ТРНК связывают аминокислоты и переносят их в рибосому для синтеза белка, кодируют аминокислоты, расшифровывают генетический код.

Выводы и сравнительная таблица

Нередко школьникам дают задание по биологии или химии – сравнить ДНК и РНК. Таблица в этом случае будет необходимым помощником. Все, что было сказано ранее в статье, вы сможете увидеть здесь в сжатой форме.

Сравнение ДНК и РНК (выводы)
ПризнакДНКРНК
СтруктураДве цепи.Одна цепь.
Полинуклеотидная цепьЦепи правозакручены относительно друг друга.Может иметь различные формы, все зависит от типа. Для примера возьмем тРНК, имеющую форму кленового листа.
ЛокализацияВ 99% локализация в ядре, однако можно встретить в хлоропластах и митохондриях.Ядрышки, рибосомы, хлоропласты, митохондрии, цитоплазма.
МономерДезоксирибонуклеотиды.Рибонуклеотиды.
НуклеотидыА, Т, Г, Ц.А, Г, Ц, У.
ФункцииХранение наследственной информации.МРНК переносит наследственную информацию, рРНК выполняет структурную функцию, мРНК, тРНК и рРНК участвуют в синтезе белка.

Несмотря на то что наша сравнительная характеристика получилась очень краткой, мы смогли охватить все аспекты строения и функций рассматриваемых соединений. Эта таблица сможет послужить хорошей шпаргалкой на экзамене или просто памяткой.

Источник: https://FB.ru/article/371575/sravnenie-dnk-i-rnk-tablitsa-dnk-i-rnk-struktura

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: