Строение мышцы как органа у человека

Содержание
  1. Строение мышц человека, мышцы синергисты и антагонисты, принцип их работы
  2. Общее строение мышцы
  3. Мышцы синергисты и антагонисты
  4. Рефлекторный характер сокращений мышц
  5. Работа и отдых мышц
  6. Утомление и восстановление мышц
  7. Мышцы человека: из чего состоят и какую работу выполняют?
  8. Какие есть мышцы у человека?
  9. Поперечно-полосатые
  10. Гладкие
  11. Сердечная мышца
  12. Скелетные мышцы и их функции
  13. Анатомия скелетной мышцы
  14. На чем основано крепление мышц
  15. Закономерности расположения мышц
  16. Мышечная анатомия: все, что нужно знать 
  17. Мышцы человека
  18. Определение мышц
  19. Строение мышц человека
  20. Название мышц человека
  21. Классификация мышц
  22. Функции мышц человека
  23. Анатомия мышц человека: простым языком. От чего зависит сила человека
  24. Детальное строение мышечной ткани
  25. Анатомия мышц: классификация и функции
  26. Физиология мышц человека
  27. Заключение
  28. Как устроены мышцы
  29. Мышцы человека
  30. Скелетные мышцы
  31. Гладкие мышцы
  32. Сердечная мышца (миокард)
  33. Мышцы в общем
  34. Мышечные волокна
  35. Медленные мышечные волокна
  36. Быстрые мышечные волокна
  37. Миофибриллы – это мышцы мышц
  38. Сухожилие
  39. Ещё о мышцах, суставах, фасциях и связках

Строение мышц человека, мышцы синергисты и антагонисты, принцип их работы

Строение мышцы как органа у человека

Скелетные мышцы, являясь активной частью опорно-двигательной системы, обусловливают передвижение тела в целом или перемещение его отдельных частей.

Мышца, как и все другие органы, имеет сложное строение. В состав ее входит несколько тканей.

Общее строение мышцы

Основу скелетной мышцы составляет поперечнополосатая мышечная ткань, обусловливающая свойство мышцы сокращаться. В каждой мышце различают сокращающуюся часть — мышечное брюшко, или тело, и несокращающуюся часть — сухожилие.

Как правило, мышца имеет два сухожилия, которыми она прикрепляется к костям.

Мышечное брюшко состоит из множества поперечно-полосатых мышечных волокон, образующих пучки разной толщины. В каждом пучке мышечные волокна связаны друг с другом рыхлой волокнистой соединительной тканью в виде тонкой сети. Пучки мышечных волокон соединены между собой прослойками соединительной ткани. Вся мышца снаружи покрыта также соединительной тканью.

Сухожилие мышцы построено из плотной оформленной соединительной ткани. Коллагеновые волокна сухожилий проникают в мышечное брюшко и там вокруг концов поперечно-полосатых мышечных волокон образуют несколько слоев, прочно соединяющих мышечное брюшко с сухожилием.

Мышца, как и все органы, снабжена нервами и сосудами. В составе нервов проходят двигательные (центростремительные) и чувствительные (центробежные) волокна.

[attention type=yellow]

Нервные импульсы, передаваемые по двигательным нервам из мозга в мышцу, вызывают ее сокращение.

[/attention]

По чувствительным нервным волокнам поступает в мозг информация из мышечных рецепторов, сигнализирующая о состоянии мышцы.

Как орган с интенсивным обменом веществ, мышца имеет хорошее кровоснабжение, интенсивность которого регулируется вегетативной нервной системой. Чаще одна и та же мышца получает кровь, а с ней и питательные вещества из нескольких артерий.

Сокращаясь, мышца укорачивается и утолщается, при этом она совершает определенную механическую работу. Величина производимой мышцей работы зависит от силы ее сокращения и величины пути, на который она укорачивается.

Сила мышцы пропорциональна количеству входящих в нее мышечных волокон, а точнее — площади поперечного сечения всех мышечных волокон, образующих мышцу. Практически чем толще мышца, тем она сильнее.

Величина пути, на который мышца может укорачиваться (или высота, на которую мышца поднимает груз), зависит от общей длины мышцы.

Скелетные мышцы, перекидываясь через сустав, а иногда через два или несколько суставов, прикрепляются своими концами к разным костям. Укорочение мышцы во время сокращения сопровождается сближением ее концов и костей, к которым мышца прикреплена. Кости во время их перемещения вместе с суставами, в которых происходит движение, и мышцами выполняют роль рычагов.

Мышцы синергисты и антагонисты

В осуществлении каждого движения участвует обычно несколько групп мышц, причем мышцы одной группы, например передние мышцы плеча, сокращаются, а мышцы противоположной группы (задние) в это время расслабляются. Благодаря одновременному сокращению и расслаблению противоположных групп мышц обеспечивается плавность движения.

Мышцы синергисты и антагонисты при сгибании руки в локте

Мышцы, производящие одну и ту же работу — одно и то же движение в данном суставе, называются синергистами, а мышцы, действующие в противоположном направлении — антагонистами.

Так, все мышцы, вызывающие сгибание в плечевом суставе, будут между собой синергистами, разгибатели этого сустава, по отношению друг к другу — синергисты. Но две эти группы мышц — сгибатели и разгибатели — одна по отношению к другой являются антагонистами.

Антагонистическое действие мышц — существенно важное приспособление в работе двигательного аппарата. При каждом движении напрягаются не только мышцы, совершающие его, но и их антагонисты, противодействующие тяге и тем придающие движению точность и плавность.

Рефлекторный характер сокращений мышц

Согласованное чередование сокращения и расслабления разных групп мышц и, следовательно, координация всех движений осуществляется нервной системой и носит рефлекторный характер. Если мы, например, наступили на что-нибудь острое или прикоснулись к чему-нибудь горячему, то руку или ногу мы отдернем еще до того, как возникнет ощущение боли.

Колющий предмет или горячее тело раздражают рецепторы кожи.

Возбуждение, возникающее в них, по центростремительным нейронам передается в центральную нервную систему, где осуществляется передача возбуждения на центробежные нейроны, и в мышцу поступает импульс, вызывающий сокращение мышц, отдергивающих ногу или руку.

В то же время в мышцах-антагонистах возникает торможение и они расслабляются. Иногда мышцы-сгибатели и разгибатели одновременно могут находиться в расслабленном (рука свободно свисает вдоль тела) или сокращенном (рука зафиксирована в согнутом в локтевом суставе положении) состоянии.

[attention type=red]

Часто мышечные рефлексы возникают в ответ на раздражение рецепторов, находящихся в самих мышцах или сухожилиях. Примером может служить коленный рефлекс.

[/attention]

Многие более сложные действия нашей повседневной жизни, например, ходьба, осуществляются в результате согласованного действия не одного органа, а целой группы органов опорно-двигательной системы, что осуществляется благодаря согласующей работе нервной системы.

Работа и отдых мышц

При сокращении мышца производит работу, которую можно измерить. Для этого величину груза, поднимаемого мышцей, умножают на высоту его поднятия. Работа мышцы равна нулю, если мышца сокращается без груза.

По мере увеличения груза работа увеличится, а затем, достигнув определенного уровня, будет постепенно снижаться. При очень большом грузе, который мышца не способна поднять, работа вновь становится равной нулю.

Если мы возьмем средний для данной мышцы груз и будем его поднимать с разными частотами, то обнаружим, что наибольшая работа мышцы будет наблюдаться при среднем ритме движений.

Средние величины нагрузок и темпа неодинаковы у разных людей. Наибольшие они у людей, занимающихся физическим трудом и спортсменов. Каждый человек может путем упражнения мышц поднять пределы этих величин и, следовательно, повысить свою работоспособность.

Однако работа человека зависит не только от правильного подбора нагрузки и темпа. Большое значение имеет и состояние нервной системы. Исключительно велика роль сознания, которое связано с головным мозгом.

Интерес к совершаемой работе, понимание ее значения, необходимости и важности очень сильно повышают производительность труда.

Работу мышц подразделяют на статическую и динамическую. Динамической называют работу, связанную с движением (управление токарным станком, пилка дров); при ней сокращения мышц чередуются с их расслаблением. При статической работе (держание груза, поза) мышцы находятся в длительном напряжении.

Утомление и восстановление мышц

Длительная непрерывная работа мышцы вызывает постепенное снижение работоспособности — утомление. Понижение работоспособности мышц обусловлено двумя основными причинами. Первой из них является то, что нервно-мышечное соединение, по которому возбуждающие мышцу импульсы приходят к мышце с нерва, утомляется значительно раньше, чем мышечные волокна.

И.М.Сеченов установил, что восстановление работоспособности утомленных мышц происходит быстрее при переключении с одного вида работы на другой.

Например, уставшая рука отдыхает быстрее, если работают мышцы другой руки. Такой отдых был назван И.М.Сеченовым активным в отличие от простого покоя.

[attention type=green]

Эти факты он рассматривал как доказательства того, что утомление развивается прежде всего в нервных центрах.

[/attention]

Другой причиной утомления работающей мышцы является накопление в ней недоокисленных продуктов распада (молочной кислоты) вследствие недостатка кислорода, а также истощения в ней энергетических запасов.

Если мышца временно прекращает работу и находится в состоянии покоя, то кровь выносит из нее продукты распада и доставляет ей питательные вещества.

Утомление проходит, и мышца восстанавливает работоспособность.

Оцените, пожалуйста, статью. Мы старались:) (3 5,00 из 5)
Загрузка…

Источник: https://animals-world.ru/myshcy-ix-stroenie-i-funkcii/

Мышцы человека: из чего состоят и какую работу выполняют?

Строение мышцы как органа у человека

На долю мускул приходится значительная часть массы тела: у мужчин – около 45% от сухой массы, у женщин – до 35%. Если ты знаешь анатомию мышц, структуру своего тела, понимаешь смысл и систему тренировок, то это во много раз повышает эффект занятий! 

Каждое движение, каждое спортивное усилие совершается с помощью мускулатуры. Как мы уже отметили, мускулы составляют существенную долю массы тела. Выполняя физические нагрузки, особенно запланированные силовые тренировки, ты увеличиваешь удельную массу мышц, а физическое бездействие – наоборот, ее уменьшает.

Какие есть мышцы у человека?

Организм человека состоит из 3-х видов мускул. Состав мышц человека таков:

  • Скелетные (поперечно-полосатые).
  • Гладкие.
  • Сердечная мышца (миокард).

Поперечно-полосатые

Первый вид (скелетные) отвечает за поддержание тела в равновесии, а также за осуществление разнообразных движений.

Тебе кажется, что ты просто сидишь в кресле и отдыхаешь? В действительности в этот момент десятки твоих скелетных мускул находятся в действии. Работа скелетной мускулатуры управляется с помощью усилий воли.

Особенностью поперечно-полосатых мускул является то, что они способны быстро сокращаться и так же быстро расслабляться. Но интенсивная работа довольно быстро приводит их к утомлению.

Гладкие

Они направлены на формирование стенок внутренних органов и капилляров. Отличительная особенность заключается в том, что этот орган функционирует независимо от человеческого подсознания.

Их невозможно остановить усилием воли, к примеру, не поддаются человеческому контролю ритмичные сокращения кишечника.

Движение этих мускул медленное и однообразное, зато они работают на протяжении всей жизни без отдыха. 

Сердечная мышца

Миокард – это уникальное сочетание качеств гладкой и скелетной мускулатуры. Как и скелетные мышцы, миокард интенсивно работает и сокращается. Наподобие гладких мускул, сердце практически неутомимо работает в течение всей жизни, и не зависит от воли человека. 

А знаешь ли ты, сколько мышц в теле человека? В структуре человеческого организма их насчитывается 640 (количество зависит от способа подсчета, общее число определяется от 639 до 850). 

Скелетные мышцы и их функции

Примечательно, что на силовых тренировках ты не только “лепишь” рельеф, но и увеличиваешь силу скелетной мускулатуры – она также косвенно улучшает качество функционирования сердечной и гладких мускул.

Причем это работает по типу обратной связи: укрепленная и развитая во время тренировок выносливости сердечная мускула выполняет работу интенсивнее и эффективнее, следовательно, улучшается кровообращение в организме.

Кровоток лучше поступает также и в скелетные мышцы, которые за счет этого могут взять на себя еще большую нагрузку.

Тренированная, развитая скелетная мускулатура формирует мощный “корсет”, который поддерживает внутренние органы, а это имеет важное значение в нормализации работы ЖКТ.

От пищеварения зависит ведь питание всех органов тела, включая мускулы.

Анатомия скелетной мышцы

Мы плавно подошли к вопросу, из чего состоят мышцы человека. Мышечная клетка (миоцит) – это основная структурная единица мышечной ткани.

Отличительная особенность миоцита состоит в том, что он в сотни раз длиннее своего поперечного сечения. Его также именуют мышечное волокно.

От 10 до 50 волокон соединены в пучок, который собственно и формирует мускулу. Для примера, бицепс состоит из миллиона волокон.

[attention type=yellow]

Основное вещество, содержащееся в мышечной клетке, – это саркоплазма. В ней находятся тонкие мышечные нити (миофибриллы), за счет которых как раз и происходят сокращения. Миофибрилла, в свою очередь, состоит из элементарных частиц – саркомеров. Их главная особенность – сокращаться под действием нервного импульса.

[/attention]

Вот, из каких волокон состоит мышца (мышечный пучок):

  • Ядер.
  • Сократительных нитей.
  • Покровной мембраны.
  • Соединительнотканной оболочки (фасции) – это мышечная группа, действующая в одном направлении.
  • Кровеносных сосудов.

Благодаря целенаправленным силовым занятиям ты увеличиваешь как число миофибрилл, так и их поперечное сечение. Вначале этот процесс увеличивает силу мускул, потом – ее толщину. Но причем число самих мышечных волокон не меняется.

Оно обусловлено генетическими особенностями организма и на протяжении жизни остается прежним.

Отсюда можно сделать вывод, что представляет собой анатомия спорта: спортсмены, чьи мускулы состоят из большего числа миоцитов, имеют больше вероятности увеличить толщину мышц в процессе силовых тренировок, чем те, у которых мускулатура содержит меньше волокон.

Таким образом, сила скелетной мышцы зависит от поперечного сечения, а именно от толщины и числа миофибрилл. Примечательно, что показатели силы и мышечной массы увеличиваются неодинаково: при возрастании мышечной массы в 2 раза, сила мышц увеличивается в 3 раза. Ученые пока не могут объяснить данный феномен.

На чем основано крепление мышц

Форма мускул разнообразная, и с трудом поддается классификации. По своей форме, различают 2 основные группы: 

  • Толстые (веретенообразные).
  • Тонкие (пластинчатые).

Любая человеческая мышца  включает мышечное брюшко и сухожилия. Что такое брюшко мышцы (определение – мясистая часть, которая при сокращении производит работу). 

А сухожилия служат в качестве места крепления мышц человека. Они необходимы для передачи силы, которую развивает мышечное брюшко, на кости либо кожные складки. Сухожилие состоит из плотной и рыхлой соединительной ткани. 

Закономерности расположения мышц

  • Согласно анатомии тела и с учетом принципа двусторонней симметрии, мускулы являются парными либо состоят из 2-х симметричных половин. 
  • Человеческое тело в частности туловище, состоит в своем большинстве из сегментов (отдельных самостоятельных единиц). То есть это не какой-то один общий пласт (хотя мускулы живота именно так и выглядят), они четко разделены на отделы. К примеру, прямая мускула живота условно разделяется на 2 отдела (верхний и нижний). 
  • Мышцы находятся на самом коротком расстоянии между точками их крепления. Производимые движения совершаются по прямой линии. Поэтому если знать точки прикрепления мышц и то, что подвижные части притягиваются к неподвижным, удается заранее предопределить сторону движения и функцию мускулы. 

Мышечная анатомия: все, что нужно знать 

Итак, самые главные аспекты по пройденному материалу:

  • Изучай информацию по всем группам мышц организма более подробно, чтобы понимать эффективность их работы.
  • Прочувствуй работу всей своей мускулатуры в процессе выполнения упражнений.
  • Учитывай типы мышечных волокон (белые и красные), вовлекай их в работу, чтобы добиться необходимого объема мускул.
  • Помни, что сила мышцы зависит от числа входящих в ее структуру миофибрилл, наращивай именно их.
  • Работай с мускулами-антагонистами, работающими во взаимно противоположных направлениях, а также синергистами, работающими в одном направлении. 
  • Стимулируй собственную нервную систему в подходах на отягощение, чтобы вовлечь максимальное количество нитей.
  • Помни, что разветвленная кровеносная система имеет важное значение для полноценного питания тканей, поэтому откажись от вредных привычек (курение, распитие алкоголя).
  • Не запускай свои мышцы, они должны функционировать при любом удобном случае.

Источник: https://zen.yandex.ru/media/fiteria/myshcy-cheloveka-iz-chego-sostoiat-i-kakuiu-rabotu-vypolniaiut-5d77cc14bc251400adcd74c4

Мышцы человека

Строение мышцы как органа у человека

Но скелетная мускулатура — далеко не все мускулы человеческого тела. Благодаря работе гладкой мускулатуры внутренних органов, по кишечнику идет перистальтическая волна, совершается вдох, сокращается, обеспечивая жизнь, самая важная мышца человеческого тела — сердце.

Определение мышц

Мышца (лат. muskulus) — орган тела человека и животных, образованный мышечной тканью. Мышечная ткань имеет сложное строение: клетки-миоциты и покрывающая их оболочка — эндомизий образуют отдельные мышечные пучки, которые, соединяясь вместе, образуют непосредственно мышцу, одетую для защиты в плащ из соединительной ткани или фасцию.

Мышцы тела человека можно поделить на:

  • скелетные,
  • гладкие,
  • сердечную.

Как видно из названия, скелетный тип мускулатуры крепится к костям скелета. Второе название — поперечно-полосатая (за счет поперечной исчерченности), которая видна при микроскопии.

К этой группе относятся мышцы головы, конечностей и туловища. Движения их произвольные, т.е. человек может ими управлять.

Эта группа мышц человека обеспечивает передвижение в пространстве, именно их с помощью тренировок можно развить или «накачать».

Гладкая мускулатура входит в состав внутренних органов — кишечника, мочевого пузыря, стенки сосудов, сердца. Благодаря ее сокращению повышается артериальное давление при стрессе или передвигается пищевой комок по желудочно-кишечному тракту.

[attention type=red]

Сердечная — характерна только для сердца, обеспечивает непрерывную циркуляцию крови в организме.

[/attention]

Интересно узнать, что первое мышечное сокращение происходит уже на четвертой неделе жизни эмбриона – это первый удар сердца. С этого момента и до самой смерти человека сердце не останавливается ни на минуту. Единственная причина остановки сердца в течение жизни — операция на открытом сердце, но тогда за этот важный орган работает АИК (аппарат искусственного кровообращения).

Строение мышц человека

Единицей строения мышечной ткани является мышечное волокно. Даже отдельное мышечное волокно способно сокращаться, что свидетельствует о том, что мышечное волокно – это не только отдельная клетка, но и функционирующая физиологическая единица, способная выполнять определенное действие.

Отдельная мышечная клетка покрыта сарколеммой – прочной эластичной мембраной, которую обеспечивают белки коллаген и эластин. Эластичность сарколеммы позволяет мышечному волокну растягиваться, а некоторым людям проявлять чудеса гибкости – садиться на шпагат и выполнять другие трюки.

В сарколемме, как прутья в венике, плотно уложены нити миофибрилл, составленные из отдельных саркомеров. Толстые нити миозина и тонкие нити актина формируют многоядерную клетку, причем диаметр мышечного волокна – не строго фиксированная величина и может варьироваться в довольно большом диапазоне от 10 до 100 мкм.

Актин, входящий в состав миоцита, — составная часть структуры цитоскелета и обладает способностью сокращаться. В состав актина входит 375 аминокислотных остатка, что составляет около 15% миоцита. Остальные 65 % мышечного белка представлены миозином. Две полипептидные цепочки из 2000 аминокислот формируют молекулу миозина.

При взаимодействии актина и миозина формируется белковый комплекс — актомиозин.

Описание мышц человека сложно, и для наглядного представления можно обратиться к учебнику «Биология 8 класс» под редакцией В.И.Сивоглазова, где на странице 117 на иллюстрации показано, каким образом выглядит миоцит под микроскопом.

Название мышц человека

Когда анатомы в Средние века начали темными ночами выкапывать трупы, чтобы изучить строение человеческого тела, встал вопрос о названиях мускулов. Ведь нужно было объяснить зевакам, которые собрались в анатомическом театре, что же ученый в данный момент кромсает остро заточенным ножом.

Ученые решили их называть либо по костям, к которым они крепятся (например, грудинно-ключично-сосцевидная мышца), либо по внешнему виду (например, широчайшая мышца спины или трапециевидная), либо по функции, которую они выполняют (длинный разгибатель пальцев). Некоторые мышцы имеют исторические названия. Например, портняжная названа так потому, что приводила в движение педаль швейной машины. Кстати, эта мышца — самая длинная в человеческом теле.

Классификация мышц

Единой классификации не существует, и мускулы классифицируются по различным признакам.

По расположению:

  • головы;в свою очередь делятся на:
    • – мимические
    • – жевательные
  • шеи
  • туловища
  • живота
  • конечностей

По направлению волокон:

  • прямые
  • поперечные
  • круговые
  • косые
  • одноперистые
  • двуперистые
  • многоперистые
  • полусухожильные
  • полуперепончатые

Мускулы крепятся к костям, перекидываясь через суставы, чтобы осуществлять движение. 
В зависимости от количества суставов, через которое перекидывается мускул:

  • односуставные
  • двусуставные
  • многосуставные

По типу выполняемого движения:

  • сгибание- разгибание
  • отведение, приведение
  • супинация, пронация (супинация – вращение кнаружи, пронация – вращение кнутри)
  • сжатие, расслабление
  • поднятие, опускание
  • выпрямление

Для обеспечения движений тела и перемещения с места на место, мускулы работают слаженно и группами. Причем по своей работе делятся на:

  • агонисты – берут на себя основную нагрузку при выполнении определенного действи (например, бицепс при сгибании руки в локте)
  • антагонисты – работают в разных направления (трехглавая мышца, участвующая в разгибании конечности в локтевом суставе, будет антагонистом трицепсу); агонисты и антагонисты в зависимости от того действия, что мы хотим совершить, могут меняться местами
  • синергисты – помощники при выполнении действия, либо стабилизаторы

Функции мышц человека

Кости скелета и скелетная мускулатура, объединившись, составляют опорно-двигательный аппарат.

Гладкая мускулатура входит в состав стенок различных полых органов — мочевого пузыря, стенок сосудов и сердца, которое сокращается под влиянием вегетативной нервной системы, т.е. не зависит от желания и воли человека.

 Хотя рассказывают, что некоторые йоги могут силой мысли замедлить частоту сердечных сокращений практически до нуля. Но это йоги, а обычный человек работой гладкой мускулатуры управлять ни силой воли, ни силой мысли не может.

Однако может косвенно влиять с помощью гормонов.

[attention type=green]

Наверняка, вы все замечали, что при интенсивной и длительной пробежке сердце начинает биться быстрее. А у некоторых, даже хорошо подготовленных учеников, перед сложным экзаменом начинается медвежья болезнь и они то и дело бегают в туалет. Все это обусловлено гормональными всплесками, которые влияют на работу организма.

[/attention]

К основным функциям скелетной мускулатуры относят:

  • двигательную
  • опорную или статическую — поддержание положения тела в пространстве

Иногда эти две функции объединяют в одну стато-кинетическую функцию.

Также мышечная система участвует в дыхании, пищеварении, мочеиспускании и термогенезе.
Более подробно о функции каждой группы скелетной мускулатуры написано в учебнике «Биология 8 класс» под редакцией В.И.Сивоглазова.

#ADVERTISING_INSERT#

Источник: https://rosuchebnik.ru/material/myshtsy-cheloveka/

Анатомия мышц человека: простым языком. От чего зависит сила человека

Строение мышцы как органа у человека

Мышечная система — это основа основ физического здоровья. Анатомия мышц человека представлена более 600 различными волокнами, которые составляют до 47 % от общей массы организма.

От их функциональности зависит не только передвижение тела в пространстве, но и многие физиологические процессы: глотание, кровообращение, жевание, обмен веществ, сердечные сокращения и т. д.

Мышечный каркас формирует строение тела, обеспечивает положение относительно окружающих предметов, позволяет человеку принимать участие в различных физических действиях и выполнять большую часть работ. Поэтому подробное изучение строения мышц, их классификации и функциональности считается одним из ключевых разделов анатомии.

Детальное строение мышечной ткани

Каждая отдельно взятая мышца — это целостный орган, состоящий из множества маленьких мышечных волокон — миоцитов, а также плотной и рыхлой соединительной ткани в различном соотношении. В ней выделяют 2 функциональные зоны: брюшко и сухожилие.

Брюшко выполняет в основном сократительную функцию, поэтому представлено комбинацией соединительнотканного вещества и миоцитов, способных к сокращению и возбуждению. Сухожилие же считается пассивной частью мышцы.

Оно располагается по краям и состоит из плотной соединительной ткани, благодаря которой осуществляется прикрепление волокон к костям и суставам.

Иннервация и кровоснабжение каждой мышцы осуществляется за счёт тончайших капилляров и нервных волокон, расположенных между пучками из 10–50 миоцитов. Благодаря этому мышечная ткань получает необходимое питание, снабжается кислородом и полезными веществами, а также может сокращаться в ответ на переданный нервной тканью импульс.

Каждое мышечное волокно выглядит как длинная многоядерная клетка, длина которой в разы превышает поперечное сечение.

Оболочка, покрывающая миоцит, объединяет различное количество мелких миофибрилл, в зависимости от числа которых, выделяют белые и красные мышцы.

[attention type=yellow]

В белых миоцитах число миофибрилл выше, поэтому они быстрее реагируют на импульс и активнее сокращаются. Красные волокна относятся к группе медленных, поскольку в них количество миофибрилл меньше.

[/attention]

Каждая миофибрилла состоит из ряда веществ, от которых зависят функциональные особенности и свойства мышц:

  • Актин — это аминокислотная белковая структура, способная к сокращению.
  • Миозин — главная составляющая миофибрилл, сформированная полипептидными цепочками из аминокислот.
  • Актиномиозин — комплекс белковых молекул актина и миозина.

Основную часть миоцитов составляют белки, вода и вспомогательные компоненты: соли, гликоген и др. Причём большую часть составляет именно вода — её процентное соотношение колеблется в диапазоне 70–80 %. Несмотря на это, каждое отдельно взятое мышечное волокно крайне сильное и устойчивое, и эта сила увеличивается в зависимости от количества миоцитов, объединённых в мышцу.

Анатомия мышц: классификация и функции

Огромное количество мышц в анатомии классифицируют по разным критериям, включающим строение, физиологические особенности, форму, размер, расположение и другие показатели. Рассмотрим каждую группу, чтобы понять, как устроена мышечная ткань человека:

  1. Гладкие мышечные волокна являются структурной единицей стенок внутренних органов, кровеносных капилляров и сосудов. Они сокращаются и расслабляются вне зависимости от импульсов, посланных сознанием человека. Работа гладких мышц отличается последовательностью, размеренностью и непрерывностью.
  2. Скелетные мышцы — каркас человеческого тела. Они отвечают за физическую активность, поддержание организма в определённом положении и двигательные возможности человека. Деятельность скелетной мускулатуры контролируется мозгом. Миоциты этой группы быстро сокращаются и расслабляются, активно реагируют на тренировки, но при этом склонны к утомлению.
  3. Сердечная мышца — отдельный вид миоцитов, объединивший часть функциональных особенностей гладких и скелетных волокон. С одной стороны, её активность непрерывна и не зависит от нервных импульсов, посланных сознанием, а с другой, сокращения осуществляются быстро и интенсивно.

Также мышцы подразделяются на топографические группы, исходя из их местоположения. В организме выделяют мышцы нижних конечностей (стопы, бедра и голени), верхних конечностей (кисти, плеча и предплечья), а также головы, шеи, груди, спины и живота. Каждая из этих групп делится на глубокую и поверхностную, наружную и внутреннюю.

В зависимости от количества суставов, охваченных мышцей, они делятся на односуставные, двусуставные и многосуставные. Чем больше сочленений задействовано, тем выше функционал конкретной мышцы.

Кроме того, мышцы классифицируются по форме и строению. К группе простых относятся веретенообразные, длинные, прямые, короткие и широкие волокна. Многоглавые мышцы — сложные.

Они представлены бицепсом, состоящим из 2 головок, трицепсом — из 3 головок и квадрицепсом — из 4 головок. Кроме того, сложными считаются многосухожильные и двубрюшные группы миоцитов.

Они бывают квадратными, дельтовидными, пирамидальными, зубчатыми, ромбовидными, камбаловидными, круглыми или треугольными.

В зависимости от функциональных особенностей выделяют:

  • сгибатели,
  • разгибатели,
  • пронаторы (вращатели по направлению кнутри),
  • супинаторы (вращатели к наружной стороне),
  • мышцы, отвечающие за отведение и приведение, поднятие и опускание и т. д.

Основная масса мышц работает парно, выполняя общую или противоположную функцию. Мышца-агонист выполняет определённое действие (например, сгибание), а антагонист — прямо противоположное (то есть разгибание). Столь сложный многоступенчатый комплекс обеспечивает слаженные и плавные движения человеческого тела.

Физиология мышц человека

К основным свойствам мышечной ткани, обеспечивающим полноценную функциональность структур, относятся:

  • Сократимость — способность к сокращению.
  • Возбудимость — реакция на нервный импульс.
  • Эластичность — изменение длины и диаметра волокон в зависимости от внешнего и внутреннего воздействия.

Сокращение мышц регулируется посредством деятельности нервной системы. Каждая мышца содержит множество нервных окончаний, которые можно условно разделить на 2 разновидности — рецепторы и аффекторы.

Чувствительные рецепторы воспринимают скорость и степень растяжения и сокращения, силу воздействия и движения миоцитов. Они могут располагаться свободно, разветвляясь в толще мышцы, или несвободно, переплетаясь в веретенообразный комплекс.

Информация о состоянии и положении мышечного волокна из рецепторов поступает в ЦНС, откуда передаётся обратно эффекторам, вызывая их возбуждение и, как следствие, реакцию на полученный импульс.

[attention type=red]

Сокращение миоцитов осуществляется за счёт проникновения нитей актина между цепочками миозина. При этом общая длина актиновых и миозиновых волокон не изменяется — сокращение наступает из-за изменения длины актиномиозинового комплекса. Такой механизм называется скользящим и сопровождается расходом энергетического запаса организма.

[/attention]

Также в мышцах содержатся нервные волокна, регулирующие процесс обмена веществ и состояние миоцитов в покое. Благодаря этому осуществляется регулировка работы мышечной ткани, предупреждается переутомление и нефизиологичное перерастяжение или сокращение. Такой механизм позволяет адаптировать работу мышц к окружающей среде и обеспечивать полноценную функциональность организма.

Заключение

Анатомия мышц, их количество и соотношение является физиологической неизменной, зависящей от наследственности и особенностей организма.

Тем не менее, грамотно приложенная физическая нагрузка, регулярные тренировки и здоровый образ жизни могут привести к развитию мышечных волокон, более высокой выносливости, силе и устойчивости.

Не стоит полагать, что от этого зависит лишь состояние скелетной мускулатуры и рельеф тела, — правильно составленный комплекс занятий улучшает работу ещё и гладких и сердечных миоцитов.

Благодаря этому можно запустить круговорот «обратной связи»: развитая с помощью регулярных тренировок сердечная мышца лучше перекачивает кровь по организму, поэтому все органы, включая и скелетные мышцы, получают больше питания и кислорода, необходимого для преодоления нагрузок. А физически развитые скелетные и гладкие мышцы, в свою очередь, лучше удерживают внутренние органы, обеспечивая их полноценную работу.

Зная основы анатомии мышц человека, вы сможете грамотно построить тренировочный процесс, привнести в свою жизнь основы физической активности и вместе с тем улучшить состояние организма в целом.

Источник: https://www.oum.ru/literature/anatomiya-cheloveka/anatomiya-myshts-ili-ot-chego-zavisit-sila-cheloveka/

Как устроены мышцы

Строение мышцы как органа у человека

Невозможно обойтись хотя бы без поверхностных знаний о том, как устроены мышцы, и о физиологических процессах, когда речь заходит о таких ключевых вещах в тренировках как: интенсивность, рост мышц, увеличение силы и скорости, правильное питание, грамотное снижение веса, аэробные нагрузки.

Трудно объяснить человеку, ничего не знающему о строении и функционировании тела, почему некоторые культуристы обладают смехотворной выносливостью, почему марафонцы не могут иметь большой мышечной массы и силы, почему нельзя убрать жир только в области талии, почему нельзя накачать огромные руки, не тренируя всё тело, почему так важны белки для увеличения мышечной массы и много-много других тем.

Любые физические упражнения всегда имеют отношение к мышцам. Рассмотрим мышцы поближе.

Мышцы человека

Мышца – это сократительный орган, состоящий из особых пучков мышечных клеток, который обеспечивает движения костей скелета, частей тела, веществ в полостях тела. А также фиксацию определённых частей тела относительно других частей.

Обычно под словом «мышцы» понимают бицепс, квадрицепс или трицепс. Современная биология описывает три разновидности мышц тела человека.

Скелетные мышцы

Это как раз и есть мышцы, о которых мы думаем, произнося слово «мышцы». Прикреплённые сухожилиями к костям, эти мышцы обеспечивают движение тела и поддержание определённой позы.

Эти мышцы ещё называют поперечно-полосатыми, поскольку при разглядывании в микроскоп бросается в глаза их поперечная исчерченность. Далее будет дано более детальное объяснение этой исчерченности.

Скелетные мышцы управляются нами произвольно, то есть по команде нашего сознания. На фотографии Вы можете видеть отдельные мышечные клетки (волокна).

Гладкие мышцы

Этот тип мышц содержится в стенках внутренних органов, таких как пищевод, желудок, кишечник, бронхи, матка, уретра, мочевой пузырь, кровеносные сосуды и даже кожа (в которой они обеспечивают движение волос и общий тонус).

В отличие от скелетных мышц, гладкие мышцы не находятся под контролем нашего сознания. Они управляются вегетативной нервной системой (бессознательной частью нервной системы человека). Строение и физиология гладких мышц отличается от таковой у скелетных мышц.

В данной статье мы не будем касаться этих вопросов.

Сердечная мышца (миокард)

Эта мышца обеспечивает работу нашего сердца. Она также не контролируется нашим сознанием. Однако, эта разновидность мышц очень похожа на скелетные мышцы по своим свойствам.

Кроме этого, сердечная мышца имеет специальный участок (сино-атриальный узел), называемый ещё пейсмейкером ( водитель ритма).

[attention type=green]

Этот участок обладает свойством вырабатывать ритмичные электрические импульсы, обеспечивающие чёткую периодичность сокращения миокарда.

[/attention]

В этой статье я буду говорить только о первой разновидности мышц – скелетных. Но Вам всегда стоит помнить, что существуют и две другие разновидности.

Мышцы в общем

У человека насчитывают около 600 скелетных мышц. У женщин масса мышц может достигать 32% от массы тела. У мужчин даже 45% от массы тела. И это прямое следствие гормональных различий полов.

Полагаю, у культуристов это значение ещё больше, поскольку они целенаправленно наращивают именно мышечную ткань. После 40 лет, если не тренироваться, мышечная масса в теле начинает постепенно снижаться примерно на 0,5-1% в год.

Поэтому физические упражнения с возрастом становятся просто необходимы, если конечно Вы не желаете превратиться в развалину.

Отдельная мышца состоит из активной части – брюшка, и пассивной части – сухожилий, которыми крепится к костям (с двух сторон). Различные разновидности мышц (по форме, по креплению, по функциям) будут рассмотрены в отдельной статье, посвящённой классификации мышц. Брюшко состоит из множества пучков мышечных клеток. Пучки разделены между собой прослойкой соединительной ткани.

Мышечные волокна

Мышечные клетки (волокна) имеют очень вытянутую форму (словно нити) и бывают двух типов: быстрые (белые) и медленные (красные). Часто встречаются данные и о третьем промежуточном типе мышечных волокон.

Обсудим более детально типы мышечных волокон в отдельной статье, а здесь ограничимся лишь общими сведениями.

В некоторых крупных мышцах длина мышечных волокон может достигать десятка сантиметров (например, в квадрицепсе).

Медленные мышечные волокна

Эти волокна не способны к быстрым и мощным сокращениям, но зато способны сокращаться долго (часами) и связаны с выносливостью.

Волокна этого типа имеют много митохондрий (органоиды клетки, в которых происходят главные энергетические процессы), значительный запас кислорода в соединении с миоглобином.

Преобладающим  энергетическим процессом в этих волокнах является аэробное окисление питательных веществ. Клетки этого типа опутаны густой сетью капилляров. Хорошие марафонцы, как правило, имеют в своих мышцах больше волокон именно этого типа.

Отчасти это имеет генетические причины, а отчасти объясняется особенностями тренировок. Известно, что при специальных тренировках на выносливость в течение длительного времени в мышцах начинает преобладать именно такая (медленная) разновидность волокон.

В статье основы кардиотренинга я рассказал об энергетических процессах, происходящих в мышечных волокнах.

Быстрые мышечные волокна

Эти волокна способны к очень мощным и быстрым сокращениям, однако, они не могут сокращаться продолжительное время. Этот тип волокон имеет меньшее количество митохондрий.

Быстрые волокна опутаны меньшим количеством капилляров по сравнению с медленными волокнами. Большинство тяжелоатлетов и спринтеров, как правило, имеют больше белых мышечных волокон. И это вполне закономерно.

При специальных тренировках силовой и скоростной направленности в мышцах возрастает процент белых мышечных волокон.

[attention type=yellow]

Когда говорят о приёме таких препаратов спортивного питания, как креатин, речь идёт как раз о развитии белых мышечных волокон.

[/attention]

Мышечные волокна тянутся от одного сухожилия до другого, поэтому зачастую длина их равна длине мышцы. В месте соединения с сухожилием оболочки мышечных волокон прочно связываются с коллагеновыми волокнами сухожилия.

Каждая мышца обильно снабжена капиллярами и нервными окончаниями, идущими от мотонейронов (нервных клеток, отвечающих за движение). Причём, чем тоньше работа, совершаемая мышцей, тем меньшее количество мышечных клеток приходится на один мотонейрон. Например, в мышцах глаза на одно нервное волокно мотонейрона приходится 3-6 мышечных клеток.

А в трёхглавой мышце голени (икроножная и камбаловидная) на одно нервное волокно приходится 120-160 и даже более мышечных клеток. Отросток мотонейрона соединяется с каждой отдельной клеткой тонкими нервными окончаниями, образуя синапсы. Мышечные клетки, иннервируемые одним мотонейроном, называются двигательной единицей.

По сигналу мотонейрона они сокращаются одновременно.

По капиллярам, опутывающим каждую мышечную клетку поступает кислород и другие вещества. Через капилляры же в кровь выводится молочная кислота, когда она образуется в избытке при интенсивных нагрузках, а также углекислый газ, продукты метаболизма. В норме у человека на 1 кубический миллиметр мышц приходится около 2000 капилляров.

Усилие, развиваемое одной мышечной клеткой, может достигать 200 мг. То есть при сокращении одна мышечная клетка может поднять вес в 200 мг. При сокращении мышечная клетка способна укоротиться более, чем в 2 раза, увеличиваясь в толщину. Поэтому мы имеем возможность демонстрировать свои мышцы, например, бицепс, сгибая руку. Он, как известно, приобретает форму шара, увеличиваясь в толщину.

Посмотрите на рисунок. Здесь хорошо видно, как именно расположены в мышцах мышечные волокна. Мышца в целом находится в соединительнотканной оболочке, называемой эпимизием. Пучки мышечных клеток также разделены между собой слоями соединительной ткани, в которых проходят многочисленные капилляры и нервные окончания.

Кстати говоря, мышечные клетки, принадлежащие одной двигательной единице могут лежать в разных пучках.

Далее, переходим к отдельно взятой мышечной клетке.

В цитоплазме мышечной клетки присутствует гликоген (в виде гранул). Интересно, что мышечного гликогена в организме может быть даже больше, чем гликогена в печени в силу того, что мышц в организме много.

[attention type=red]

Однако, мышечный гликоген может быть использован только локально, в данной мышечной клетке. А гликоген печени используется всем организмом, в том числе и мышцами. О гликогене мы ещё поговорим отдельно.

[/attention]

Миофибриллы – это мышцы мышц

Обратите внимание, мышечная клетка буквально набита сократительными жгутами, которые называются миофибриллами. По сути дела – это мышцы мышечных клеток. Миофибриллы занимают до 80% всего внутреннего объёма мышечной клетки.

Белый слой, опутывающий каждую миофибриллу – это ни что иное, как саркоплазматический ретикулум (или, по-другому, эндоплазматическая сеть).

Этот органоид густой ажурной сеточкой опутывает каждую миофибриллу и имеет очень важное значение в механизме сокращения и расслабления мышцы (перекачка ионов Ca).

Как Вы можете видеть, миофибриллы состоят из  коротких цилиндрических участков, называемых саркомерами. В одной миофибрилле обычно несколько сотен саркомеров. Длина каждого саркомера около 2,5 микрометров.

Саркомеры отделены друг от друга тёмными поперечными перегородками (см. фото). Каждый саркомер состоит из тончайших сократительных нитей двух белков: актина и миозина. Строго говоря, в акте сокращения участвует четыре белка: актин, миозин, тропонин и тропомиозин.

Но поговорим об этом в отдельной статье о сокращении мышц.

Миозин это толстая белковая нить, огромная длинная молекула белка, одновременно являющаяся и ферментом, расщепляющим АТФ. Актин – это более тонкая белковая нить, представляющая собой также длинную молекулу белка. Процесс сокращения происходит благодаря энергии АТФ.

При сокращении мышцы, толстые нити миозина связываются с тонкими нитями актина, образуя молекулярные мостики. Благодаря этим мостикам, толстые нити миозина подтягивают нити актина, что приводит к укорочению саркомера.

[attention type=green]

Само по себе сокращение одного саркомера незначительно, но поскольку саркомеров очень много в составе одной миофибриллы, сокращение получается весьма заметным. Важным условием сокращения миофибрилл является наличие ионов кальция.

[/attention]

Тонкое устройство саркомера объясняет поперечную исчерченность мышечных клеток. Дело в том, что сократительные белки имеют разные физико-химические свойства и по-разному проводят свет. Поэтому одни участки саркомера выглядят темнее других. А если учесть, что саркомеры соседних миофибрилл лежат в точности друг напротив друга, то отсюда и поперечная исчерченность всей мышечной клетки.

Мы более детально рассмотрим строение и работу саркомеров в отдельной статье о сокращении мышц.

Сухожилие

Это очень плотное и нерастяжимое образование, состоящее из соединительной ткани и волокон коллагена, служащее для крепления мышцы к костям.

О прочности сухожилий говорит тот факт, что требуется усилие в 600 кг, чтобы разорвать сухожилие четырёхглавой мышцы бедра, и в 400 кг, чтобы разорвать сухожилие трёхглавой мышцы голени. С другой стороны, если говорить о мышцах, это не такие уж и большие цифры.

Ведь мышцы развивают усилия в сотни килограммов. Однако система рычагов тела снижает это усилие, чтобы получить выигрыш в скорости и амплитуде движения. Но об этом в отдельной статье по биомеханике тела.

Регулярные силовые тренировки приводят к укреплению сухожилий и костей в местах крепления мышц. Таким образом, сухожилия тренированного атлета могут выдерживать и более серьёзные нагрузки без разрыва.

Соединение сухожилия с костью не имеет чёткой границы, поскольку клетки ткани сухожилия вырабатывают и вещество сухожилия, и вещество кости.

Соединение сухожилия с мышечными клетками происходит за счёт сложного соединения и взаимного проникновения микроскопических волокон.

Между клетками и волокнами сухожилий вблизи мышц лежат специальные микроскопические органы Гольджи. Их предназначение – определение степени растяжения мышцы. По сути, органы Гольджи – это рецепторы, оберегающие наши мышцы от чрезмерного растяжения и напряжения.

Ещё о мышцах, суставах, фасциях и связках

Мышцы бёдер. Строение и функции.
Фасции и сила мышц
Режимы работы и сила мышц
Тест на мышечные волокна
Мышечная масса. Как накачать мышцы?
Правила растяжки мышц

КУРСЫ ТРЕНИРОВОК

Готовые комплексы упражнений для самостоятельных тренировок от автора сайта.

Источник: https://ggym.ru/view_post.php?id=131

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: