Структура и химический состав ядра

Клеточное ядро как важнейший компонент клетки #47

Структура и химический состав ядра
К Клеточное ядро является обязательной составляющей клетки, которое регулирует обмен веществ и отвечает за передачу и хранение наследственной информации.

Клеточное ядро

Схема строения интерфазного ядра: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — перинуклеарное пространство; 4 — пора; 5 — ядрышко; 6 — кариоплазма; 7 — хроматин.

Ядро является обязательным компонентом всех эукариотических клеток. Форма и размеры ядра зависят от формы и величины клетки и выполняемой ею функции.

Химический состав ядра

По химическому составу ядро отличается от остальных компонентов клетки высоким содержанием ДНК (15 — 30%) и РНК (12%). В ядре клетки сосредоточено 99% ДНК клетки в виде комплекса с белками – дезоксирибонуклеопротеина (ДНП).

Функции ядра

Ядро выполняет две главные функции:

  1. хранение, воспроизведение и передачу наследственной информации
  2. регуляцию процессов обмена веществ, протекающих в клетке.

Выделяют два состояния ядра: делящееся и интерфазное. В интерфазном ядре различают: ядерную оболочку, ядерный сок, хроматин и ядрышки.

Ядерная оболочка

Ядерная оболочка (кариолемма) представлена двумя биологическими мембранами, между которыми находится перинуклеарное пространство. Наружная ядерная мембрана непосредственно соединена с мембранами каналов эндоплазматической сети.

На ней располагаются рибосомы. Ядерная оболочка пронизана многочисленными порами, через которые происходит обмен веществ между ядром и цитоплазмой.

Основная функция ядерной оболочки: регуляция обмена веществ между ядром и цитоплазмой клетки.

Ядерный сок

Ядерный сок (кариоплазма) – это однородная масса, заполняющая пространство между структурами ядра. В его состав входят вода, минеральные соли, белки (ферменты), нуклеотиды, аминокислоты, АТФ и различные виды РНК.

Функция кариоплазмы: обеспечение взаимосвязей между ядерными структурами.

Хроматин

Хроматин представляет собой дезоксирибонуклеопротеин (ДНП), состоящий преимущественно из ДНК и белков-гистонов, выявляемый под световым микроскопом в виде глыбок и гранул. Это деспирализованные хромосомы интерфазного ядра. В процессе митоза хроматин путем спирализации образует хорошо видимые (особенно в метафазе) интенсивно окрашивающиеся структуры – хромосомы.

Метафазная хромосома

Схема строения метафазной хромосомы (А) и типы хромосом (Б).

А: 1 — плечо; 2 — центромера; 3 — вторичная перетяжка; 4 — спутник; 5 — две хроматиды; Б: 1 — акроцентрическая; 2 — субметацентрическая; 3 — метацентрическая.

Метафазная хромосома состоит из двух продольных нитей ДНП – хроматид, соединенных друг с другом в области первичной перетяжки – центромеры. Центромера делит каждую хроматиду на два плеча.

В зависимости от расположения первичной перетяжки различают следующие типы хромосом: метацентрические (равноплечие), в которых центромера расположена посередине, а плечи примерно равной длины; субметацентрические (неравноплечие), когда центромера смещена от середины хромосомы, а плечи неравной длины; акроцентрические (палочковидные), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. Некоторые хромосомы могут иметь вторичные перетяжки, отделяющие от хроматиды участок, называемый спутником. Основная функция хромосом – хранение, воспроизведение и передача генетической информации.

Кариотип

Кариотип – это диплоидный набор хромосом соматических клеток организма определенного вида. Каждый вид растений и животных имеет определенное, постоянное число хромосом. Так, в ядре соматических клеток у лошадиной аскариды содержится 2 хромосомы, у мухи дрозофилы – 8, у человека – 46.

Во всех соматических клетках число хромосом всегда парное (диплоидный набор – 2n), т.е. каждая хромосома в наборе имеет парную, гомологичную (одну из этих хромосом дочерний организм получает от отца, а вторую от матери). Гомологичные хромосомы одинаковы по величине, форме, расположению центромер.

Для каждого биологического вида характерно постоянство числа, величины и формы хромосом. При образовании половых клеток из каждой пары гомологичных хромосом в гамету попадает только одна, поэтому хромосомный набор гамет называется гаплоидным (одинарным – 1n).

При оплодотворении восстанавливается диплоидный набор хромосом.

Ядрышки

Ядрышки имеют шаровидную форму, не окружены мембраной. Они содержат преимущественно белки и р-РНК. Ядрышки – непостоянные образования, они растворяются в начале деления клетки и восстанавливаются после его окончания.

Их образование связано со вторичными перетяжками (ядрышковыми организаторами) спутничных хромосом, в которых локализованы гены, кодирующие синтез рибосомальных РНК и белков. Функция ядрышек – образование субъединиц рибосом.

Эукариотические клетки

Клетки подавляющего большинства живых организмов имеют оформленное, сложно устроенное ядро, цитоплазму с органоидами и оболочку. Такие клетки называются эукариотическими. Они характерны для протистов, грибов, растений и животных.

Прокариотические клетки

Прокариотические клетки не имеют оформленного ядра и мембранных органоидов. Генетический аппарат прокариот представлен нуклеоидом одной кольцевой молекулой ДНК, не связанной с белками-гистонами и не окруженной мембраной. Имеются рибосомы. Функций мембранных органоидов выполняют впячивания плазмалеммы – мезосомы. К прокариотам относятся бактерии и цианобактерии.

Клетки растений и животных сходны по строению и химическому составу, но между ними имеются и определенные отличия.

Отличие про- от эукариотических клеток

ПризнакПрокариотыЭукариоты
Цитоплазматическая мембранаЕстьЕсть
Клеточная стенкаЕстьУ животных нет, у растений есть
Ядерная оболочкаНетЕсть
МитохондрииНетЕсть
Комплекс ГольджиНетЕсть
ЭПСНетЕсть
ЛизосомыНетЕсть
МезосомыЕстьНет
РибосомыЕстьЕсть
ХромосомыНет(кольцевая молекула ДНК)Набор хромосом (ДНК + белок)
Способ размноженияПростое бинарное делениеМитоз, амитоз

Отличие животных от растительных клеток

ПризнакЖивотные клеткиРастительные клетки
Клеточная стенкаНетЕсть (целлюлоза)
Тип питанияГетеротрофныеАвтотрофные
ПластидыНетЕсть
ЦентросомаЕстьНет
Центральная вакуольНетЕсть
Запасное питательное веществоГликогенКрахмал

1. Биология для абитуриентов. Авторы: Давыдов В.В. , Бутвиловский В.Э. , Рачковская И. В. , Заяц Р.Г.

Источник: https://biobloger.ru/kletochnoe-yadro.html

Характеристики ядра

Структура и химический состав ядра

Основными характеристиками атомных ядер являются электрический заряд, масса, спин, энергия связи и так далее.

Заряд ядра

Ядро каждого из атомов обладает положительным зарядом. В качестве носителя положительного заряда выступает протон.

По той причине, что заряд протона численно эквивалентен заряду электрона e, можно записать, что заряд ядра элемента равен +Ze (Z выражает собой целое число, которое указывает на порядковый номер химического элемента в периодической системе химических элементов Д. И. Менделеева).

Значение Z также характеризует число протонов, входящих в состав ядра и количество электронов в атоме. Именно из-за этого его определяют как атомный номер ядра. Электрический заряд представляет собой одну из основных характеристик атомного ядра, от которой зависят оптические, химические и иные свойства атомов.

Масса ядра

Существует также другая значимая характеристика ядра, а именно масса. Массу атомов и ядер принято выражать в атомных единицах массы (а.е.м.), в качестве атомной единицы массы выступает 112 массы нуклида углерода C612:

где NA=6,022·1023 моль-1 обозначает число Авогадро.

Кроме того, есть другой способ выражения атомной массы: исходя из соотношения Эйнштейна E=mc2, ее выражают в единицах энергии. По той причине, что масса протона mp=1.00728 а.е.м.=938,28 МэВ, масса нейтрона mn=1.00866а.е.м.=939,57МэВ, а масса электрона me=5,49⋅10-4 а.е.м.=0,511МэВ,

Из приведенных выше значений видно, что масса электрона несущественно мала, если сравнивать ее с массой ядра, поэтому масса ядра практически эквивалентна массе всего атома и отлична от целых чисел.

Определение 1

Масса ядра, которая выражается в а.е.м. и округляется до целого числа носит название массового числа и обозначается с помощью буквы A. Она характеризует количество нуклонов, находящихся в составе ядра.

[attention type=yellow]

Количество нейтронов в ядре эквивалентно N=A−Z. В качестве обозначения ядер используют символ XZA, в котором X определяется как химический символ этого элемента.

[/attention]

Определение 2

Атомные ядра, обладающие одинаковым числом протонов, однако при этом отличающимися друг от друга массовыми числами, носят название изотопов.

В некоторых элементах количество стабильных и нестабильных изотопов достигает десятков, в качестве примера, уран обладает 14 изотопами: от U92227 до U92240. Большая часть химических элементов, которые существуют в природе, являются смесью нескольких изотопов.

Как раз наличие изотопов объясняет следующее явление: некоторые природные элементы обладают массой, которая является отличной от целых чисел. В качестве примера рассмотрим природный хлор, который состоит из 75% C1735l и 24% C1737l, а его атомная масса эквивалентна 35,5 а.е.м.

В большей части атомов, исключая водород, изотопы обладают практически равными физическими и химическими свойствами. Однако, за своими, исключительно ядерными свойствами, изотопы значительно отличаются друг от друга.

Какие-то из них могут представлять собой стабильные изотопы, а другие – радиоактивные.

Определение 3

Ядра с эквивалентными массовыми числами, но отличающимися значениями Z носят название изобар, в качестве примера, A1840r, C2040a.

Определение 4

Ядра с одинаковым числом нейтронов определяют как изотоны.

Определение 5

Среди легких ядер встречаются и так называемые «зеркальные» пары ядер. Это такие пары ядер, в которых числа Z и A−Z меняются местами. В качестве примера подобных ядер можно привести C613 и N713 или H13 и H23e.

Опиши задание

Размер атомного ядра

Принимая форму атомного ядра приблизительно сферической, мы имеем возможность ввести понятие его радиуса R. Обратим внимание на то, что в некоторых ядрах есть небольшое отклонение от симметрии в распределении электрического заряда. Более того, атомные ядра представляют собой не статические, а динамические системы, и понятие радиуса ядра нельзя представлять как радиус шара.

Именно из-за этого факта, в качестве размеров атомного ядра нужно принимать ту область, в которой проявляются ядерные силы. В процессе создания количественной теории рассеивания α-частиц Э. Резерфорд исходил из тех предположений, что атомное ядро и α – частица взаимодействуют по закону Кулона, Другими словами из того, что электрическое поле вокруг ядра обладает сферической симметрией.

Это работает в отношении α – частиц, обладающих достаточно малым значением энергии E.

[attention type=red]

При этом частица не имеет возможности преодолеть кулоновский потенциальный барьер и в последствии не достигает области, в которой наблюдается действие ядерных сил.

[/attention]

Одновременно с повышением энергии частицы до некоторого граничного значения Eгр, α-частица достигает данной границы. В таком случае в рассеянии α-частиц возникает некоторое отклонение от формулы Резерфорда.

Опытным путем было определено, что радиус R ядра является зависимым от числа нуклонов, которые входят в состав ядра.

Размеры ядер определяют экспериментальным путем по рассеянию протонов, быстрых нейтронов или же электронов высоких энергий. Существует также целый список иных косвенных способов получения значений размеров ядер. Они основываются:

  • на связи времени жизни α – радиоактивных ядер с энергией выпущенных ими α – частиц;
  • на оптических свойствах, носящих название мезоатомов, в которых один из электронов временно захвачен мюоном;
  • на сравнении энергий связи парных зеркальных атомов.

Данные способы подтверждают эмпирическую зависимость R=R0A1/3, а также благодаря таким измерениям определено значение постоянной R0=1,2-1,5·10-15 м.

Обратим свое внимание также на тот факт, что за единицу расстояний в атомной физике и физике элементарных частиц принимают единицу измерения «ферми», которая равняется 10-15 м 1 ф=10-15 м.

Радиусы атомных ядер определяются их массовым числом и находятся в промежутке от 2·10-15 до 10-14 м. Если из формулы R=R0A1/3 выразить R0 и записать его в следующем виде 4πR33A=const, то можно заметить, что на каждый нуклон приходится примерно одинаковый объем.

Из данного факта можно сделать вывод о том, что плотность ядерного вещества для всех ядер так же приблизительно одинакова. Как можно заметить, плотность ядерного вещества довольно велика. Этот факт основывается на действие ядерных сил.

Энергия связи. Дефект масс ядер

Определение 6

Величину ∆m, что определяет разницу масс между массой нуклонов, которые формируют ядро, и массой ядра, называют дефектом массы ядра.

Важные сведения о свойствах ядра могут быть получены даже при отсутствии знаний о подробностях взаимодействия между нуклонами ядра, на основании закона сохранения энергии и закона пропорциональности массы и энергии.

[attention type=green]

Поскольку в результате каждого изменения массы ∆m происходит соответствующее изменение энергии ∆E(∆E=∆mc2), то при образовании ядра выделяется некоторое количество энергии.

[/attention]

Исходя из закона сохранения энергии можно сделать вывод о том, что ровно такое же количество энергии необходимо для того, чтобы разделить ядро на составляющие его элементы, другими словами отдалить нуклоны друг от друга на такие расстояния, при которых взаимодействия между ними не происходит. Данную энергию определяют как энергию связи ядра.

Замечание 1

Заметим, что данная формула довольно неудобная в применении, так как в таблицах приводиться не массы ядер, а массы, которые относятся к массам нейтральных атомов.

По этой причине ради удобства вычислений формулу преобразуют таким образом, чтобы в нее входили не массы атомов, а массы ядер. Для достижения этой цели в правой части формулы добавим и отнимем массу Z электронов (me).

В таком случае Eсв=Zmp+me+A-Zmn-mя+Zmec2=ZmH11+A-Zmn-mac2 — масса атома водорода, ma — масса атома.

В ядерной физике энергию зачастую выражают в мегаэлектрон-вольтах (МэВ). Если речь идет о практическом применении ядерной энергии, то ее измеряют в джоулях. В случае сравнения энергии двух ядер используют массовую единицу энергии — соотношение между массой и энергией (E=mc2). Массовая единица энергии (le) равняется энергии, что соответствует массе в одну а.е.м. Она равняется 931,502 МэВ.

Рисунок 1

Определение 7

Кроме энергии, важное значение имеет удельная энергия связи ядра — энергия связи, которая припадает на один нуклон: ω=Ecв/A. Эта величина меняется сравнительно медленно по сравнению со сменой массового числа A, имея почти постоянную величину 8.6 МэВ в средней части периодической системы и уменьшается до ее краев.

Дефект массы

Энергия связи в МэВ: Eсв=∆m·931,502=0,030359·931,502=28,3 МэВ;

Удельная энергия связи: ω=EсвA=28,3 МэВ4≈7.1 МэВ.

Источник: https://Zaochnik.com/spravochnik/fizika/atomy-jadra/harakteristiki-jadra/

Особенности строения и функции ядра клетки

Структура и химический состав ядра

Ядро – главное составляющее живой клетки, которое несет наследственную информацию, закодированную набором генов. Оно занимает центральное положение в клетке. Размеры варьируются, форма обычно сферичная или овальная. В диаметре ядро в разных клетках может быть от 8 до 25мкм. Есть исключения, примеру, яйцеклетки рыб имеют ядра диаметром в 1 мм.

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами.

Хромосомы несут в себе основную генетическую информацию каждого человека.

Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

  • Равноплечие;
  • разноплечие,
  • одноплечие.

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается.

Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк.

[attention type=yellow]

Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

[/attention]

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

  1. Принимает участие в синтезе белка, рибосомной РНК.
  2. Регулирует функциональную активность клетки.
  3. Сохранение генетической информации, точная ее репликация и передача потомству.

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

Оцените, пожалуйста, статью. Мы старались:) (16 4,69 из 5)
Загрузка…

Источник: https://animals-world.ru/yadro-stroenie-i-funkcii-v-period-interfazy/

Строение атомов химических элементов. Состав атомного ядра. Строение электронных оболочек атомов

Структура и химический состав ядра

Атом — наименьшая частица вещества, неделимая химическим путем. В XX веке было выяснено сложное строение атома. Атомы состоят из положительно заряженного ядра и оболочки, образованной отрицательно заряженными электронами.

Общий заряд свободного атома* равен нулю, так как заряды ядра и электронной оболочки уравновешивают друг друга.

При этом величина заряда ядра равна номеру элемента в периодической таблице (атомному номеру) и равна общему числу электронов (заряд электрона равен −1).

Атомное ядро состоит из положительно заряженных протонов и нейтральных частиц — нейтронов, не имеющих заряда. Обобщенные характеристики элементарных частиц в составе атома можно представить в виде таблицы:

Название частицыОбозначениеЗарядМасса
протонp+11
нейтронn01
электронe−−1принимается равной 0

Число протонов равно заряду ядра, следовательно, равно атомному номеру. Чтобы найти число нейтронов в атоме, нужно от атомноймассы (складывающейся из масс протонов и нейтронов) отнять заряд ядра (число протонов).

Например, в атоме натрия 23Na число протонов p = 11, а число нейтронов n = 23 − 11 = 12

Число нейтронов в атомах одного и того же элемента может быть различным. Такие атомы называют изотопами.

Электронная оболочка атома также имеет сложное строение. Электроны располагаются на энергетических уровнях (электронных слоях).

Номер уровня характеризует энергию электрона. Связано это с тем, что элементарные частицы могут передавать и принимать энергию не сколь угодно малыми величинами, а определенными порциями — ква́нтами. Чем выше уровень, тем большей энергией обладает электрон.

Поскольку чем ниже энергия системы, тем она устойчивее (сравните низкую устойчивость камня на вершине горы, обладающего большой потенциальной энергией, и устойчивое положение того же камня внизу на равнине, когда его энергия значительно ниже), вначале заполняются уровни с низкой энергией электрона и только затем — высокие.

Максимальное число электронов, которое может вместить уровень, можно рассчитать по формуле:
N = 2n2, где N — максимальное число электронов на уровне,
n — номер уровня.

Тогда для первого уровня N = 2 · 12 = 2,

для второго N = 2 · 22 = 8 и т. д.

Число электронов на внешнем уровне для элементов главных (А) подгрупп равно номеру группы.

В большинстве современных периодических таблиц расположение электронов по уровням указано в клеточке с элементом. Оченьважно понимать, что уровни читаются снизу вверх, что соответствует их энергии. Поэтому столбик цифр в клеточке с натрием:18

2

следует читать так:

на 1-м уровне — 2 электрона,

на 2-м уровне — 8 электронов,

на 3-м уровне — 1 электрон
Будьте внимательны, очень распространенная ошибка!

[attention type=red]

Распределение электронов по уровням можно представить в виде схемы:
11Na ) ) )
       2  8  1

[/attention]

Если в периодической таблице не указано распределение электронов по уровням, можно руководствоваться:

  • максимальным количеством электронов: на 1-м уровне не больше 2 e−,
    на 2-м — 8 e−,
    на внешнем уровне — 8 e−;
  • числом электронов на внешнем уровне (для первых 20 элементов совпадает с номером группы)

Тогда для натрия ход рассуждений будет следующий:

  1. Общее число электронов равно 11, следовательно, первый уровень заполнен и содержит 2 e−;
  2. Третий, наружный уровень содержит 1 e− (I группа)
  3. Второй уровень содержит остальные электроны: 11 − (2 + 1) = 8 (заполнен полностью)

* Ряд авторов для более четкого разграничения свободного атома и атома в составе соединения предлагают использовать термин «атом» только для обозначения свободного (нейтрального) атома, а для обозначения всех атомов, в том числе и в составе соединений, предлагают термин «атомные частицы». Время покажет, как сложится судьба этих терминов. С нашей точки зрения, атом по определению является частицей, следовательно, выражение «атомные частицы» можно рассматривать как тавтологию («масло масляное»).

Какое количество вещества водорода выделится при взаимодействии цинка с соляной кислотой массой 146 г?

Решение:

  1. Записываем уравнение реакции: Zn + 2HCl = ZnCl2 + H2↑
  2. Находим молярную массу соляной кислоты: M (HCl) = 1 + 35,5 = 36,5 (г/моль)
    (молярную массу каждого элемента, численно равную относительной атомной массе, смотрим в периодической таблице под знаком элемента иокругляем до целых, кроме хлора, который берется 35,5)
  3. Находим количество вещества соляной кислоты: n (HCl) = m / M = 146 г / 36,5 г/моль = 4 моль
  4. Записываем над уравнением реакции имеющиеся данные, а под уравнением — число моль согласно уравнению (равно коэффициенту перед веществом):
            4 моль           x моль
    Zn + 2HCl = ZnCl2 + H2↑
           2 моль            1 моль
  5. Составляем пропорцию:
    4 моль — x моль2 моль — 1 моль(или с пояснением:

    из 4 моль соляной кислоты получится x моль водорода,

    а из 2 моль — 1 моль)

  6. Находим x:
    x =4 моль • 1 моль / 2 моль = 2 моль

Ответ: 2 моль.

автор: Владимир Соколов

Источник: https://staminaon.com/ru/chemistry/chemistry_9-3.htm

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: