Структурно функциональная единица миофибриллы

Кто такие Миофибриллы или как накачать мышцы

Структурно функциональная единица миофибриллы

В этой статье мы поговорим о мышцах.  Статья для тех кто хочет подробно разобраться в этом вопросе вплоть до клеточного уровня. Если вы не хотите слепо следовать стереотипным рекомендациям или программам тренировок – мы дадим тебе информацию. После прочтения которой ты будешь точно знать что делать. Ответим на ключевые вопросы:

Сколько делать повторений и подходов?
Сколько отдыхать?
С каким весом и в каком стиле работать?

И самое главное ты будешь абсолютно точно знать почему, ты делаешь именно так, а не иначе.

Мы подробно разберем, используя только научные данные, несколько основных моментов:

Как устроены мышцы, рассмотрим строение мышечной ткани и узнаем что именно растет.
Как работают мышцы, механизм сокращения и источники энергии для него.
Почему растут мышцы, разберем истинный механизм роста.

Строение мышцы

Мышца состоит из пучков, которые в свою очередь состоят из мышечного волокна. Волокно это массив мышечных клеток. Количество пучков значительно изменить нельзя, их количество заложено генетически и они формируют предрасположенность к росту мышц. У кого-то их к примеру 10, а у кого-то 3.

Вот и получается что кто-то с легкостью набирает объемы а кто-то никак не может.
Мышечная клетка состоит из миофибрилл, а часть имеют своем составе и митохондрии. Здесь и происходит разделение клеток по количеству митохондрий на типы: великалитические и окислительные.

Количество миофибрилл и митохондрий можно увеличивать. Гиперплазия миофибрилл – вот потенциал для роста мышц. Миофибрилла состоит из актина и миозина – эти два элемента как раз и сокращаются. Как видим стандартная система много уровней организации материи, конечно это упрощенная схема.

Остальные детали в нашем случае не важны.

Как это работает

Вернемся к мышечным волокнам – каждое мышечное волокно связано с нервом, от которого получает сигналы. Нервное волокно подходит к позвоночному столбу. Позвоночный столб в свою очередь соединяется с мозгом.

Мозг выдает сигнал, вызывая волну электрической активности – которая возбуждает всю мышечную клетку и заставляет ее мембрану освобождать электрически заряженные ионы кальция. Они распределяются по всему мышечному волокну и вступают в контакт с актиновыми нитями, которые защищены в спокойном состоянии, а после действий ионов кальция оголяются.

Оголенные участки актина нужны для того чтобы вступили в работу головки миозиновых нитей. Миозиновые нити подтягиваются – тем самым вызывая сокращения мышцы.

Вся цепная реакция занимает только несколько тысячных секунды. Когда сокращение завершено, кальций возвращается в свой источник в мембране клетки, оголённые участки вдоль актиновых нитей сразу же закрываются и мышечное волокно расслабляется до новой команды из мозга. Чем сильнее сигнал тем больше волокон рекрутируются в работу.

Если сигнал слабый – допустим вы хотите палец согнуть, то рекрутируются совсем чуть-чуть волокон. По этому эволюционно произошло разделение волокон. Волокна выполняющие слабую работу получили свой источник энергии, а волокна для сильной экстремальные нагрузки – свой.

Всем известная молекула атф – это и есть источник энергии позволяющий мышцам сокращаться.

АТФ – роль и синтез

В мышце есть запас атф, которых хватает только на две секунды интенсивной работы. Дальше нужно восстанавливать уровень атф. Для восстановления атф есть три режима.

Самый мощный креатинфосфатный. Креатинфосфат распадается на свободный креатин и восстанавливает атф. По уровню атф довольно эффективно, но его хватает в среднем секунд на 10.

К слову запас креатинфосфата увеличивается при тренировках секунд на 5-10, а профессиональных атлетов может его хватать и на 30 секунд.Следующий режим – анаэробный. Гликолиз анаэробной – значит без кислорода, топливом служит запасы гликогена.

[attention type=yellow]

Этот режим уже хуже восстанавливают атф, но зато дольше – вплоть до минуты. В процессе образуется молочная кислота (ионы водорода). Они препятствуют ионам кальция присоединяться к актину.

[/attention]

Снижается внутриклеточная ph, что приводит к снижению скорости ресинтеза атф и через минуту мышца уже не в состоянии сокращаться при заданной нагрузке.Далее включается третий режим – аэробный гликолиз с участием кислорода. Топливом служит жир. Ресинтез атф малоэффективен. Но зато время работы в разы дольше.

Как же растут мышцы?

Долгое время считалось что мышцы растут из-за микро травм получаемых в процессе тренировок. На сегодняшний день стало ясно, что это не так.

Дело в том что миофибриллы бывают разной длины и в процессе работы под нагрузкой короткие фибриллы рвутся и начинаться воспаление, что и приводит к более отёку в мышцах. Со временем тренировок длина миофибрилл выравниваются и после тренировочная боль проходит.

Но это никак не стимулирует рост мышц и чтобы понять как растут мышцы, то есть увеличивается количество миофибрилл (а не их длина).

Разберем упрощенную схематическую модель. Информация о структуре белков содержится в ДНК, находящимся в ядре клетки.

Процесс синтеза белка идет саркоплазму соответственно для того
чтобы белок синтезировался информация о последовательности аминокислот в его структуре должна быть перенесено из ядра в саркоплазму.

Переносчиком информации служит РНК, она синтезируется на одной из цепей днк и выходит саркоплазму вместе с рибосомой. Там из свободных аминокислот начинает строить белок. Получается что целью тренировок является стимуляция синтеза РНК (более подробно про РНК мы рассказывали в этой статье).

Итоги и выводы

Мышца растет за счет увеличения количества миофибрилл, а не их длины.Есть несколько источников энергии для разной нагрузки. В процессе гликолиза образуется молочная кислота.Мышца растет из-за ускоренного синтеза РНК, а не из-за микротравм или растяжении мышечной ткани.Возникает вопрос, как стимулировать синтез РНК? Этот вопрос будет подробно раскрыт в последующих наших статьях.

Не забывайте ставить лайки и подписываться на нас.

Источник: https://zen.yandex.ru/media/id/5c37486a512ee600aaa22d9d/kto-takie-miofibrilly-ili-kak-nakachat-myshcy-5c389d6c42ecce00abe83797

Мышечное волокно

Структурно функциональная единица миофибриллы

Мышечное волокно (миоцит) — основная структурная и функциональная единица соматической мышечной ткани; третья стадия и результат гистогенеза.

Длина мышечного волокна часто совпадает с длиной мышцы, в состав которого оно входит.

Структура

Волокно покрыто сарколеммой (от греч. Σαρξ (σαρκός) — мясо, плоть и греч. Λέμμα — кожура), которая состоит из двух мембран. Внешняя базальная мембрана стыкуется с ретикулярными и тонкими коллагеновыми волокнами соединительной ткани, что его окружает. Внутренняя мембрана аналогичная плазмолемме всех тканевых клеток и участвует в проведении импульсов сокращения волокна.

Плазмолемма образует систему узких канальцев, пронизывающих все волокно и сливаются с сарколеммой противоположной стороны. Таким образом, вся саркоплазма пронизана системой поперечных трубок, Т-системой. Цитоплазма имеет специальное название — саркоплазма, структурными компонентами которой являются миофибриллы (сократительный аппарат волокна), органеллы, включения, гиалоплазма.

Многочисленные ядра мышечного волокна размещаются на периферии под саркоплазме. В гиалоплазме волокна локализуются хорошо развиты митохондрии (саркосомы), которые скапливаются между микрофибрилами, вокруг многочисленных ядер, непосредственно, под сарколеммой.

[attention type=red]

Это те зоны волокна, которые требуют значительного количества АТФ, поэтому становится понятным высокая метаболическая активность скелетных мышц. Интенсивного развития достигает агранулярная эндоплазматическая сеть (саркоплазматическая ретикулум).

[/attention]

Ее мембранные элементы размещаются вдоль саркомеров (частицы, из которых состоит волокно и зависит его длина). Саркоплазматического ретикулума присуща специфическая функция накопления ионов кальция, необходимых при сокращении и расслаблении мышечного волокна.

Другие органоиды (гранулярный эндоплазматический ретикулум, комплекс Гольджи и другие) развиты слабее и локализуются у ядер, на периферии под сарколеммой. Ядра могут размещаться в виде цепочки друг за другом, что есть в результате амитотичного деления — показатель реактивного состояния мышечного волокна.

Количество ядер колеблется от десятка до нескольких сотен, они имеют овальную форму. Гетерохроматин в виде крупных гранул находится в сравнительно светлой нуклеоплазме.

Между миофибрилл локализуется значительное количество гранул гликогена (трофической) включение — материала для синтеза АТФ.

В цитоплазме мышечного волокна содержатся дыхательные ферменты, белок, миоглобин — аналог гемоглобина эритроцитов, который также способен связывать и отдавать кислород. Миоглобин окрашивает мышечные волокна в красный цвет.

В зависимости от содержания саркоплазмы (а, следовательно, и миоглобина), толщины и ферментного состава мышечные волокна делятся на красные и белые.

Красные волокна в саркоплазме содержат большое количество миоглобина, многочисленные митохондрии, богатые цитохромы, миофибриллы в них имеют незначительную толщину. Мышцы, в которых преобладают красные волокна, способные к длительной непрерывной активности, поскольку их саркоплазма хорошо обеспечивает энергетические потребности. Белые волокна содержат в саркоплазме меньше миоглобина и митохондрий, в них большая толщина миофибрилл. Белые мышечные волокна способны сокращаться быстрее, чем красные, но они сравнительно быстро устают, так как не обеспечивают структуры саркоплазмы дос-татньою количеством энергии.

Миофибриллы

Наибольший удельный вес в саркоплазме составляют миофибриллы. Они размещаются вдоль мышечного волокна и их длина совпадает с длиной волокна, диаметр миофибрилл — 1-2 мкм.

Они имеют характерную поперечную полосатость (чередование светлых и темных полос, дисков), что обусловлено особенностью их структуры и, в связи с этим, различными оптическими свойствами.

Все темные и все светлые диски миофибрилл в одном волокне находятся на одном уровне, из-за чего волокно имеет поперечную исчерченность. Продольная ориентация миофибрилл предоставляет мышечному волокну продольную полосатость.

В поляризованном свете темные полосы (диски) имеют двойное лучепреломление — анизотропию, из-за чего их называют анизотропными — А-дисками. Светлые диски являются однопроменезаломнимы, из-за чего их называют изотропными — И-дисками.

Внутри каждого I-диска проходит темная зона — линия Z (телофрагма).

В центре А-диска наблюдается светлая зона — линия Н(полоска Гензена), посередине которой находится тонкая, темная линия М(мезофрагма).

Миофибриллы можно получить, расщепив мышечное волокно.

Саркомер

Структурной единицей миофибрилл является саркомер. Это участок миофибриллы между двумя телофрагма. В Миофибриллы саркомер размещаются друг за другом и в зоне Т-телофрагма, богатой гликозаминогликаны, миофибриллы могут при мацерации распадаться на отдельные саркомер.

Саркомер — это часть миофибриллы, состоящий из Т-телофрагма — линии Z (для двух соседних саркомеров), половин I-и А-диска половины зоны Н, М-мезофрагма — половины зоны Н, половин А- и I-дисков, линии Z- телофрагма.

Механизм сокращения

Саркомер — это элементарные сократительные единицы поперечно-полосатых мышц, которые сокращаются благодаря способности уменьшать свою длину в два раза. Электронно, гистохимическими, биохимическими исследованиями удалось установить функциональную морфологию саркомера.

Были идентифицированы продольные нити саркомера-миофиламенты или микрофиламенты двух типов. А диск состоит из толстых миофиламентов (диаметр — 10- 12 нм, длина — 1,5-2 мкм), и диск — с тонких (диаметр — 5-7 нм, длина — 1-1,3 мкм) миофиламентов.

Материалом, из которого состоят толстые миофиламенты, является белок миозин, а тонкие — актин, тропомиозин-В и тропин. Количественное отношение миозинових и актиновых миофиламентов в одной Миофибриллы 1: 2, то есть на один миозиновои миофиламенты приходится два актиновых.

[attention type=green]

Актиновые и миозиновые миофиламенты контактируют друг с другом не конец в конец, а перемещаются (скользят) по отношению друг к другу и в А-диске образуют зону перекрытия. Часть А-диска, которая состоит только из миозинових миофиламентов, называют Н-линией и по сравнению с зоной перекрытия, они светлее.

[/attention]

При сокращении саркомера актиновые миофиламенты еще дальше проникают в промежутки между миозиновои, а при полном сокращении их свободные концы почти совпадают в середине саркомера.

Поскольку длина таких филаментов остается неизменной, они, просачиваясь между толстыми филаментами, влекут телофрагма, к которым прикреплены, тем самым сближая конце всех саркомеров. В полностью сокращенном саркомере Н-зона, а также I-диски почти исчезают и все саркомер превращается в зону перекрытия.

М-линия (мезофрагма) — это место соединения толстых миозиновых миофиламентов в анизотропной А-диске Z-линия (телофрагма) проходит через всю толщину саркомера, а зона прикрепления тонких актиновых миофиламентов имеет зигзагообразный контур.

Z-линия состоит из Z-филаментов, в состав которых входят белки — тропомиозин-В и L-актин, Z-филаменты формируют решетку, к которой с обеих сторон прикрепляются тонкие актиновые миофиламенты И дисков двух соседних саркомеров. Таким образом, телофрагма (Z-линии) и мезофрагма (М-линии) является опорным аппаратом саркомеров.

Таким образом, при сокращении мышечного волокна его сократительный аппарат испытывает таких изменений: уменьшается длина саркомера, поскольку актиновые миофиламенты И-диска продвигаются (скользят) между миозиновои А-диске, сдвигаясь к Н-линии (мезофрагма) А-диске; увеличиваются зоны перекрытия, формируя боковые соединения (мостики) между актиновыми и миозиновои миофиламенты; сокращается Н-линия (мезофрагма) сближаются Z-линии (телофрагма). Чем сильнее сокращается миофибрилл, тем глубже актиновые миофиламенты заходят в промежутки между миозиновои, зоны перекрытия расширяются за счет сужения Н-линий.

Для понимания механизма сокращения миофибриллы необходимо упомянуть о наличии специализированного саркоплазматического ретикулума саркоплазмы волокна и образования плазмолеммой системы поперечных канальцев Т-трубочек. Зоны контакта системы Т-трубочек и терминальных цистерн саркоплазматического ретикулума называют триадами.

Т-трубки проходят на уровне Z-линий (телофрагма) через все волокно и контактируют с цистернами саркоплазматической сетки с противоположной стороны. Таким образом, Т-трубочки локализуются на границе двух саркомеров и контактируют с терминалями саркоплазматической сети обоих саркомеров, образуя триады.

Эти структуры играют основную роль в деполяризации (распространении импульса) и аккумуляции ионов кальция.

[attention type=yellow]

Плазмолемма мышечного волокна, как и неврилема нервных волокон, электрически поляризована. Внутренняя поверхность плазмолеми, расслабленного мышечного волокна, имеет отрицательный потенциал, а внешняя-положительный.

[/attention]

При сокращении мышечных волокон волна деполяризации по нервному волокну через нервное окончание достигает плазмолеми мышечного волокна и вызывает ее местную деполяризацию.

Через систему Т-трубочек, которая связана с плазмолеммой и триадой, волна деполяризации влияет на проницаемость мембран саркоплазматического ретикулума, что приводит к освобождению аккумулированных ионов кальция с ее поверхности в саркоплазму.

В присутствии ионов кальция активизируется расщепление АТФ, что необходимо для образования актомиозинового комплекса и скольжения актиновых миофиламентов по отношению к миозинових. Это вызывает сокращение каждого саркомера, а отсюда миофибрилл и мышечных волокон в целом.

Важное место в этом процессе принадлежит молекулам миофиламентов-миозина. Они состоят из головки и длинного хвостика. При гидролизе АТФ, чему способствует АТФ-на активность головок молекул миозина, они образуют связи (мостики) с определенными молекул миофиламентов-актина.

Актиновые миофиламенты сближаются к центру саркомера, Z-линии (телофрагма) сближаются, увеличиваются зоны перекрытия, уменьшаются Н-зоны (мезофрагма) анизотропных дисков миофибрилл.

Затем с участием АТФ актомиозин связи разрушаются, а миозиновые головки присоединяются к соседним участкам актиновых миофиламентов, что способствует дальнейшему продвижению миофиламентов друг к другу.

При уменьшении концентрации ионов кальция (они трансформируются в мембраны саркоплазматического ретикулума) сокращение мышечного волокна прекращается. Для этого также необходима энергия АТФ. Следовательно, при расслаблении так же, как при сокращении мышечного волокна расходуется АТФ, источником которой в саркоплазме является гликоген, глюкоза и жирные кислоты.

Фиксация

Концы мышечных волокон прочно фиксируются в сухожилий или сухожильных прослоек, размещаемых между ними. Сарколеммой образует пальцеобразные вырасти, между которыми находятся коллагеновые волокна соединительной ткани, которые крепят мышечные волокна до костей. Эта связь настолько прочен, что при нагрузке, которое способно разорвать мышцы или сухожилия, структура остается целой.

Тонкие слои рыхлой соединительной ткани между мышечными волокнами называют эндомизий, ретикулярные и коллагеновые волокна его переплетаются с волокнами сарколеммы (внешний соединительно-тканевый слой). В эндомизием локализуются гемокапилляры и структуры нервной ткани.

Комплекс волокна с окильний элементами является структурной и функциональной единицей скелетной мышцы. Мышечные волокна объединяются в пучки, между которыми есть толстые слои рыхлой соединительной ткани, которая носит название перимизий.

Соединительную ткань, покрывающая мышцу в целом, как орган, называют епимизий.

Воспроизведение

Мышечные волокна способны к активному регенерации. Репаративная регенерация происходит на фоне отмирания старых структур и создание новых. Как и при нормальном гистогенезе, регенерация происходит в три фазы: миобластичну; мышечных трубочек формирование мышечного волокна.

Источник: https://info-farm.ru/alphabet_index/m/myshechnoe-volokno.html

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: