Тельца руффини и колбы краузе

Нейрокосметика. Миф или реальность? Современный взгляд на нейрофизиологию кожи

Тельца руффини и колбы краузе

Не так давно мы писали про акне и стресс. Какие физиологические обоснования лежат в основе зависимости состояния кожи от стресса? Может ли косметика уменьшить влияние стрессоров на кожу?

В одной из своих программных статей профессор Мизери сказал: «Кожа и центральная нервная система – эмбриональные и ностальгирующие друг по другу братья. Кожа – это не просто скопление различных слоев и клеток, выполняющих функцию покрова и защиты, кожа является частью нервной и иммунной системы, очень живо реагирующей на постоянно меняющиеся стимулы окружающей среды».

В своей работе профессор Мизери подчеркивает, что слишком долгое время исследователи пренебрегали сложными взаимоотношениями кожи и нервной системы.

Но в 2000 годах это упущение стремительно стали исправлять производители косметики. На рынке появился новый звучный термин: «Нейрокосметика».

Все было бы хорошо, если бы продавцы косметики не стали вкладывать в термин много больше, чем он изначально в себе нес.

Все мы привыкли к мысли, что наружные средства работают с эпидермисом, а большая часть обменных и синтетических процессов протекает в дерме. Практикующие специалисты со скепсисом восприняли рекламные лозунги о чудодейственных свойствах сывороток, устраняющих мутации в клетках ДНК кожи.

[attention type=yellow]

А ведь сама идея воздействия на кожу через ее нейрорецепторный аппарат посредством наружных средств известна много тысяч лет.

[/attention]

Самым простым примером является капсаицин.

Капсаицин – алкалоид, содержащийся в различных видах стручкового перца, прозрачное кристаллическое вещество, способное обладать местно-раздражающим свойством при нанесении на кожу.

Ощущение жжения, созданного капсаицином, вызвано ирритацией тройничных нервов, которые являются рецепторами боли.

Эти сенсорные нейроны выпускают субстанцию P – химический посыльный нейропептида, который сообщает мозгу о воспалении. Это свойство капсаицина еще не так давно активно использовалось в наружных дерматологических средствах для обезболивания при опоясывающем лишае.

Другими широко распространенными природными примерами нейрокосметики являются: ментол, кофеин (1,3,7- триметилксантин), 6-жинжерол, производное имбиря.

За счет каких физиологических механизмов осуществляется непосредственное действие нейрокосметических средств?

Рецепторный аппарат кожи состоит из большого числа афферентных и эфферентных нервных волокон и специфических нервных образований, носящих название инкапсулированных телец.

В коже располагаются главным образом рецепторные нервные окончания, чувствительные к боли, механическому сдавлению и раздражению. Чувствительность кожи к внешним воздействиям обеспечивают осязательные тельца (Мейснера), пластинчатые тельца (Фатера-Пачини), тельца Руффини и концевые колбы Краузе.

Концевые колбы Краузе имеют овальную форму; они находятся непосредственно под сосочками дермы, состоят из нервного волокна, свернутого в виде клубка. Размер колб Краузе невелик – до 100-120 мкм. Основная функция этих рецепторов – восприятие механического раздражения. Имеются также данные, что колбы Краузе ответственны и за восприятие холода.

Тельца Мейснера правильной овальной (или эллипсовидной) формы, размерами 40-60 мкм. Располагаются они в отдельных сосочках дермы.

Они покрыты тонкой соединительнотканной капсулой, внутри которой расположены особые чувствительные клетки.

[attention type=red]

Тельца Мейснера обеспечивают восприятие ощущения от давления на кожу какого-либо предмета, служат для определения скорости и направления действующего агента.

[/attention]

Тельца Руффини находятся глубоко в дерме, а также в подкожной клетчатке. Они необходимы для измерения времени действия на кожу раздражающего стимула – чем оно продолжительнее, тем дольше работают рецепторы.

Тельца Фатера — Пачини находятся преимущественно в подкожной жировой клетчатке. Иногда они бывают настолько велики, что их можно рассмотреть невооруженным глазом.

Как и тельца Мейснера, они относятся к механорецепторам кожи. Их основная функция – определение скорости и интенсивности действия объекта, контактирующего с кожей.

Тельца Фатера-Пачини так же отвечают за ощущения вибрации кожи.

Данные о кожных рецепторах, полученные в научно-исследовательских лабораториях в последнее время, заставляют несколько переосмыслить представление о том, что каждый вид ощущения возникает от раздражения строго специфических рецепторов.

Исследователи обнаружили, что большинство рецепторов, специализируясь на каком – либо одном виде раздражений, «осваивают» и смежные.

Например, среди свободных нервных окончаний имеются рецепторы, чувствительные не только к болевым раздражителям, но также к механическим, температурным, а тельца Руффини, специализирующиеся на тепловом восприятии, при определенных условиях начинают воспринимать и болевые раздражения.

Передача нервного импульса осуществляется посредством нейромедиаторов (нейротрансмиттеров).

Традиционно нейромедиаторы относят к 3 группам: аминокислоты, пептиды, моноамины (в том числе катехоламины). На настоящий момент изучено более 200 нейротрансмиттеров и 25 из них обнаруживаются в коже.

Большинство из них нейропептиды (субстанция P, MSH, пептиды синтез которого кодируется геном кальцитонина (CGRP), эндорфины) и нейротрансмиттеры не пептидной природы – катехоламин и ацетилхолин.

В настоящее время известно, что при воспалении, воздействии агрессивных факторов окружающей среды, в результате истинного стресса (соматические болезни, недостаток сна, хронические интоксикации) происходит выброс из нервных окончаний кожи различных нейропептидов (субстанции Р, нейрокининов А и В, брадикинина, пептида, ассоциированного с геном кальцитонина, вазоактивного интестинального пептида).

[attention type=green]

В коже нейропептиды продуцируются кератиноцитами, эндотелиальными клетками и окончаниями нервных волокон, последние обозначаются как С-волокна и представляют собой вегетативные нервные волокна так называемой нехолинергической-неадренергической иннервации. [Гребенченко Е.И., Гущин И.С., Феденко Е.С. Механизм кожного зуда при атопическом дерматите. — Рос. аллер. журн., 2009; 3: 3-11.]

[/attention]

Для дерматокосметологов эта информация актуальна тем, что нехолинергические нервные окончания обнаруживаются в эпидермисе. Основным нейротрансмиттером этих нервов считается вещество Р. Иммунореактивная субстанция Р была обнаружена под и внутри эпителия кожи, вокруг кровеносных сосудов.

Периферические окончания чувствительных С-волокон кожи, расположенных в эпидермисе и несущих субстанцию Р, могут воспринимать различные стимулы: от различных повреждающих агентов, температурных воздействий, давления, травмы. Высвобождение из нервных окончаний этого нейропептида приводит к увеличению секреции, отеку, вазодилатации в коже.

А ведь в своей косметологической практике мы используем физические и механические факторы (нагрев тканей, лазерное излучение, охлаждение), контролируемая травма является важной составляющей частью терапевтических программ.

Таким образом, мы можем контролировать воспаление при помощи наружных средств, воздействующих на С-концевые нервные волокна, расположенные в эпидермисе и подавлять избыточную выработку субстанции P.

А это в свою очередь не приведет к запуску аварийного ответа кожи на травму и воздействие стрессора, и поможет избежать развития нежелательных явлений и осложнений.

От капсаицина к олигопептиду

Современные производители нейрокосметики сделали упор на самое перспективное направление – использование пептидов в качестве ингибиторов субстанции P и избыточной секреции нейротрансммитеров.

Основные виды пептидов:

Сигнальные пептиды – стимулирующее воздействие на внеклеточный матрикс, в частности на синтез коллагена и эластина. ( Пальмитоил Пентапептид-3, Пальмитоил Олигопептид, Пальмитоил Трипептид-1)

Барьерные пептиды – предназначены для стабилизации и транспортировки определенных металлов (например, Cu), играющих роль в ферментативных реакциях. (Cu-GHK)

Нейротрансмиттер-модуляторные пептиды

Ацетилгексапептид-3 (Аргилиррин), препятствует спонтанной контракции фибробластов, уменьшает стресс–зависимые проявления старения.

[attention type=yellow]

Ацетилгексапептид-8. Имитируя белок SNAP, участвует в образовании комплекса SNARE, необходимого для успешного экзоцитоза.

[/attention]

Пентапептид-18 имитирует действие энкефалина – уменьшает возбуждение в нейроне, ингибируя поток ионов кальция через мембрану и снижает Са-зависимый выброс медиаторов воспаления.

Пальмитил Три-Пептид 8- нейропептид, предотвращающий и уменьшающий повышенную температуру кожи. Замедляет каскадную реакцию воспаления.

Вторая большая группа нейрокосметических агентов – это синтетические аналоги растительных экстрактов и флавоноиды. Это довольно гетерогенная группа соединений. Наиболее известные представители – это полифенолы белого и зеленого чая, экстракт семян тыквы (Ocaline), экстракт коры Эперуа, центелла азиатская, гинкго билоба – содержит флавоноиды кемпферол, кверцетин.

Источник: https://www.1nep.ru/cosmetology/articles/203895/

Тельца Мейснера и Пачини – основа нашего осязания

Тельца руффини и колбы краузе

Все наше представление об окружающем мире формируется опосредовано через органы чувств. Главные из них – зрение, слух, обоняние и осязание. Можно закрыть глаза и уши, выключить обоняние, но тактильные ощущения останутся.

За них отвечают механорецепторы, одним из которых являются тельца Мейснера. И хотя наши представления о работе органов восприятия довольно широки, именно самые примитивные тактильные чувствительные рецепторы до сих пор остаются неразгаданной тайной.

Рецепторы – основа мировоззрения

Рецепторы – это специализированные клетки, способные к восприятию стимулов. Например, фоторецепторы (свет), хеморецепторы (вкус, запах), механорецепторы (давление, вибрация), терморецепторы (температура). Эти клетки преобразуют энергию стимула в сигнал, который возбуждает сенсорные нейроны.

Механизм возбуждения связан с возникновением потенциала действия на мембранах клеток и работой натрий-калиевого насоса. Они как кодировщики, которые переводят информацию в нужный код. При этом каждый рецептор настроен на специфический сигнал и его силу.

Они фиксируют сигналы по принципу «все или ничего», и для формирования четкого ощущения наша нервная система использует одновременно множество рецепторов.

В эту группу чувствительных клеток относят рецепторы давления. Они бывают нескольких типов:

  • Пластинчатые тельца (Фатера-Пачини).
  • Клетки Меркеля.
  • Тельца Мейснера.
  • Колбы Краузе.

Тактильные рецепторы расположены в эпидермисе и дерме, на 1 квадратный сантиметр кожи приходится порядка 25 рецепторов разного типа. Но на руках и подошвах ног, лице и слизистых оболочках их количество резко возрастает. Кроме того, именно наличию в так называемой точке G осязательных телец Мейснера женщины обязаны возникновению эротической восприимчивости.

Тельца Фатера-Пачини

Эти рецепторы расположены в глубоких слоях дермы и отвечают за восприятие давления и вибрации. Они состоят из луковицы (колбы), внутри которой разветвлены чувствительные нервные волокна. Колба покрыта капсулой с жидкостью и миофибриллами. Давление посредством жидкости передается на безмиелиновые нервные окончания.

Клетки Меркеля

Это чувствительные клетки, расположенные в основании волосяного фолликула и в эпидермисе кожи (больше всего на ладонях рук). Кроме тактильной чувствительности они считаются и нейроэндокринными. Доказано, что в эмбриогенезе именно они выделяют вещества, стимулирующие рост нервных волокон и производных кожи.

В верхушках сосочков дермы располагаются эти скопления чувствительных клеток. Что такое тельца Мейснера? Это группа тактильных клеток, плоские части которых формируют перпендикулярные своеобразные пластины.

Все это заключено в капсулу, куда входит нервное волокно и разветвляется. Все составляющие тельца Мейснера соединены между собой миофибрильными волокнами.

Малейшее давление на эпидермис передается на нервные окончания.

Колбы Краузе

Сферические образования, которых особенно много на слизистой оболочке рта. Их восприимчивость настроена на холод и восприятие давления. По строению схожи с тельцами Мейснера и пока мало изучены. Восприятие пресловутой точки G в верхней трети влагалища женщин связывают и со скоплением этих рецепторов.

Кто за что отвечает

Как уже говорилось, тактильные ощущения и их возникновение таят еще много загадок. Эмпирическим путем пока установлены лишь некоторые функции механорецепторов нашей кожи.

Функция телец Мейснера – восприятие тонкой чувствительности, Фатера-Пачини – грубое и однократное оценивание силы давления, колб Краузе – холодовые ощущения и оценивание давления.

А клеткам Меркеля мы обязаны ощущениям поглаживания по голове.

Как это работает

Чувствительность тактильных анализаторов высока лишь к изменениям давления. Именно поэтому мы ощущаем одежду и часы лишь в момент их надевания. Способность различить отдельные касания связана с частотой их воздействий.

Кончики пальцев способны различать прикосновения с частотой до 300 в секунду. Кроме того, все рецепторы имеют свой порог чувствительности – это давление, при котором мы ощущаем воздействие.

Например, для рецепторов кончиков пальцев рук это 3 мг/мм, а для подошв ступней – 250 мг/мм.

Наши пальцы тоже думают

Отпечатки пальцев, образованные папиллярными линиями, преподнесли свои сюрпризы ученым. Давно известно, что узор этих линий формируется у человека еще в утробе матери и образован рядами кожных сосочков, под которыми находятся клетки Меркеля и тельца Мейснера.

Последние данные исследований доказывают, что эти рельефы призваны «подпрыгивать» на неровностях поверхностей и превращать их в акустические колебания, которые способны уловить рецепторы.

[attention type=red]

Но не все эти данные рецепторы передают в головной мозг, как бы фильтруя важное не важное. Исследования подтвердили, что тельца Мейснера обрабатывают информацию, а не просто передают ее. Ранее эта функция принадлежала исключительно головному мозгу.

[/attention]

Исследования в данной области продолжаются, но теперь понятно, зачем эти линии образуют такие сложные узоры.

Суммация и тренировка

Тактильные анализаторы поддаются тренировке и обучению. Примеров тому множество, начиная от повышения порога чувствительности у слепых людей и заканчивая высокой чувствительностью профессиональных взломщиков.

Это свойство чувствительного анализатора основано на эффекте суммации. Он основан на связи нескольких рядом расположенных рецепторов с одним сенсорным нейроном.

Таким образом, сигнал не вызвал бы возбуждения при поступлении от одного рецептора, но при поступлении с нескольких возбуждение нейрона вызывается суммарной информацией рецепторов.

Источник: https://FB.ru/article/376328/teltsa-meysnera-i-pachini---osnova-nashego-osyazaniya

Нейронауки для всех: клетки нервной системы

Тельца руффини и колбы краузе

Наш мозг – огромный мегаполис, дорожная инфраструктура которого напоминает связи и проводящие пути; по ним с огромной скоростью и частотой подобно спорткарам проносятся сигналы, а разные линии жилых районов имитируют различные уровни организации головного мозга.

Здесь есть разделение труда, «неравноправие», доминирование, свои валюты и множество других вещей, которые так или иначе напоминают жизнь людей в крупном городе-миллионнике.

Наша нервная система состоит из приблизительно 86 миллиардов нервных, и почти такого же количества (85 миллиардов глиальных клеток и от ста до пятисот триллионов  синапсов (соединений).

При этом она чрезвычайно разнолика и имеет в своём арсенале около сотни клеточных типов, которые способны строить тысячи связей между собой и создавать настоящие клеточные ансамбли.

В таком разнообразии очень легко запутаться, поэтому сегодня мы с вами разберём, что же именно отличает нервную ткань от других, какие клеточные варианты имеются в её составе, чем уникален нейрон и почему именно у нервной системы получается делать нас мыслящими.

Начнём с «внутренностей» нейрона

Как и любая нормальная клетка, он имеет ядро, цитоплазму и клеточную мембрану, которая обособляет его от внешней среды. Однако, это не всё. Нейрон – одна из немногих клеток, которая способна к генерации нервного импульса. О нём мы с вами поговорим в следующих выпусках, а сейчас стоит отметить лишь то, что такая возбудимость позволяет мозгу обрабатывать информацию, а нам — существовать.

У нейрона есть несколько характерных составных элементов, увидев которые вы никогда не спутаете его с другими клетками: это аксон— длинный отросток, по которому сигналы идут от перикариона, или тела, и дендриты – короткие отростки, по которым информация движется к нейрону от его соседей. Аксон, главный «кабель», покрыт «изоляцией»,  миелиновой оболочкой. Миелиновая оболочка аксонов есть только у позвоночных, а поскольку у нас явно есть позвоночник, то… Эту оболочку образуют «накручивающиеся» на аксон специальные шванновские клетки (в центральной нервной системе — олигодендроциты, несколько другой тип клеток, нежели шванновские), между которыми остаются свободные от миелиновой оболочки участки — перехваты Ранвье.

Перикарион имеет в своём составе обычные для живых эукариотических (ядерных) клеток субъединицы: собственно ядро, гранулярную эндоплазматическую сеть (ЭПС), которая синтезирует белки и прочие нужные клетке вещества и окрашивается при специальной окраске в тёмный цвет, которым покрываются глыбки тигроида или субстанции Ниссля, которые можно разглядеть даже в световой микроскоп.

Также здесь есть аппарат Гольджи или «накопительный резервуар», митохондрии — «энергетические станции», лизосомы с «пищеварительными» ферментами, рибосомы, благодаря которым происходит синтез белков, а также целая сеть внутреннего цитоскелета, в которую входят микротрубочки, особые частицы — MAP (протеины, ассоциированные с микротрубочками), а также нейрофиламенты (типа промежуточных нитей).

Благодаря этому скелету в клетке протекает очень важный для неё перенос веществ от центра к периферии, что особенно актуально для длинного (порой до нескольких десятков сантиметров) аксона, который питается также от тела. Такой ток бывает аксональным быстрым (до 100-1000 мм/сутки) и медленным (1-3 мм/сутки), дендритическим (75 мм/сутки), а также движущимся в обратном направлении — ретроградным.

А теперь представим, что перед нами микроскоп, а на предметном столике – покрашенный одним из специфических способов (по Нисслю или импрегнацией серебром) срез мозга.

Как определить, где в переплетении отростков аксоны, а где – дендриты? Посмотреть нужно на тигроид, о котором мы упоминали. Дело в том, что он в виде гранул «рассыпан» по всему телу и коротким отросткам, но никогда вы его не найдёте в отростке длинном.

А заканчивается он в районе аксонального холмика – структуры, близкой к началу аксона, в которой начинается генерация импульса.

Нейрон снаружи

Теперь, когда мы разобрались, что внутри у нервных клеток, посмотрим на их внешнюю организацию и попробуем разобраться в функциональном разделении.

Вспомните, что мы говорили про один длинный аксон и короткие дендриты.

Так вот, этот вид нейронов называется мультиполярным, и он — самый «популярный», однако, есть и другие: униполярные (всего один отросток), биполярные (два отростка) и псевдоуниполярные (один отросток, который потом делится на два). Есть и вовсе аполярные(«голые») нейроны. Это предшественники нервных клеток – нейробласты.

Интересно, что униполярные нейроны представлены у человека всего лишь в одном виде: амакриновыми клетками сетчатки глаза.

[attention type=green]

Псевдоуниполярные встречаются гораздо чаще и составляют основную массу спинномозговых чувствительных узлов, о которых мы поговорим чуть позже. Биполярных тоже не так много, и их пул, главным образом, приходится на обонятельные рецепторные клетки.

[/attention]

Ну а с мультиполярными и так всё понятно – это универсальные представители нервной системы (например, мотонейроны спинного мозга).

Но, при всей своей важности, строение  – это всё же не функции.

Каждый нейрон, представляя собой возбуждаемую и возбуждающую клетку (не путать с некими другими физиологическими процессами!), должен своим «настроением» делиться с соседями, иначе сигнал не дойдёт до адресата и не будет обработан и выполнен, что никого, конечно, не устраивает.

Поэтому, подобно водителям, въезжающим на платную скоростную трассу, нейроны должны «заплатить», чтобы передать импульс дальше. Эта «валюта» существует в двух формах: электрической и химической. Второй случай — более частый.

 А контрольно-пропускные пункты с кассами на автомагистралях воплощаются в синапсах — местах передачи возбуждения с клетки на клетку, то есть местах соединения нейронов. Такие места образуются на специальных выростах на дендритах: дендритных шипиках. Они чаще всего бывают трёх видов: пеньковые, грибовидные и тонкие шипики. Но бывают и другие

Дендритный шипик — с его шейкой и головкой

Тонкий, грибовидный и пеньковый шипики

Какие же бывают синапсы?

Реже бывает так. Благодаря ионным каналам в мембране и плотным контактам клеток электрический сигнал без особых усилий перескакивает с нейрона на нейрон и «летит» дальше — пробок нет, оплата принята, водитель доволен. Но это — электрический синапс, или, как еще умничают нейробиологи, эфапс.

Электрические синапсы (эфапсы). а — коннексон (двойная пора) в закрытом состоянии; b — коннексон в открытом состоянии; с — коннексон, встроенный в мембрану; d — мономер коннексина (белка, из которого сделаны коннексоны), е — плазматическая мембрана; f — межклеточное пространство; g — промежуток в 2-4 нанометра в электрическом синапсе; h — гидрофильный канал коннексона.

Но намного чаще случаются ситуации, когда синапс имеет достаточно широкую щель – порядка десятков микрон. То есть перед водителем река, а переправляться придётся на пароме.

Здесь вступает в силу химическая «валюта» в виде нейромедиатора, который накапливается в везикулах (пузырьках) пресинаптической мембраны, затем вырабатывается в эквивалентоном силе пришедшего импульса количестве, «переплывает» щель и принимается рецепторами на другом берегу – постсинаптической мебране.

[attention type=yellow]

Вот он, универсальный язык нервной системы, а нейроны по типу нейромедиаторов делятся на холинергические, адренергические, ГАМК-ергические и некоторые другие (об этом читайте в следующих выпусках). Исходя из этого, действие, в зависимости от типа нейромедиатора, бывает либо возбуждающим, либо тормозным.

[/attention]

Химический синапс

Но и это ещё не всё! Есть нейроны чувствительные, которые воспринимают сигнал из внешней или внутренней среды, затем следующие за ними в центральную нервную систему — вставочные, которые обеспечивают ассоциацию в нейронных сетях и могут быть в единичном или множественном числе, и двигательные, которые завершают сигнал действием и иннервируют сократительные или секреторные элементы. Также их ещё можно назвать афферентными (восходящими, двигающимися к центру), интернейронами и эфферентыми (нисходящими, двигающимися к периферии).

«Серый кардинал» нервной системы

Мы поговорили о нейронах, но нельзя забывать и о другой, не менее важной части нервной системы – нейроглии, тем более, что она составляет половину объёма головного мозга и принимает чуть ли не основное участие (как выяснилось в последние годы) в регуляции синаптической передачи, усиливая либо ослабляя сигнал.

Так вот, вся глия по строению, функциям и расположению делится на эпендимную(выстилающую внутреннее пространство цереброспинального канала и желудочков мозга), макро— и микроглию.

Макроглия, в свою очередь, имеет в своём распоряжении целый веер различных подтипов и для центральной, и для периферической нервной системы.

Так, в головном мозге она представлена астроцитами, название которых говорит само за себя (большие звёздчатые клетки с большим количеством отростков, которые оплетают нейроны и сосуды), а также олигодендроцитами, которые обеспечивают внутримозговые волокна миелином (по сути, наматываются отростками на аксон — мы уже упомянули о них), многократно увеличивающим скорость передачи импульса. Периферическая нервная система в основном обходится лишь шванновскими клетками, которые также миелинизируют волокна, но уже за пределами центра, и расходятся по всему организму. И ещё сюда добавляются так называемые мантийные глиоциты или сателлиты, которые образуют оболочку (мантию) вокруг тел нейронов в ганглиях (узлах). Микроглия представляет из себя собственную фагоцитарную систему головного мозга и активируется в основном тогда, когда в нём появляются патологические процессы.

Астроцит

Но нужно всё-таки подчеркнуть важность глии. Работы по её изучению ведутся не так много лет – буквально два последних десятилетия. Появилась такая рабочая гипотеза (автор — Филип Хейдон [Philip G.

Haydon]), согласно которой астроциты, обмениваясь сигналами, активируют нейроны, чьи аксоны находятся от них не только на близком расстоянии, но и сравнительно далеко. Эта активация в итоге способствует высвобождению нейромедиаторов.

Таким образом, астроциты регулируют готовность даже отдалённых синапсов к изменению своей эффективности, что представляет собой клеточную основу процессов памяти и обучения.

Сотрудники из лаборатории Бена Барреса (Ben A. Barres, Стэнфордский университет) пошли дальше и открыли специфический белок тромбоспондин астроцитарного происхождения, который стимулирует образование синапсов.

[attention type=red]

Сравнение же головного мозга показывает, что чем более высокое положение занимают животные на «эволюционной лестнице», тем больше в их мозге глиальных клеток по отношению к нервным.

[/attention]

Так вот, возможно, что увеличение связности астроцитов может даже повышать способность животных к обучению. Однако это ещё только предстоит доказать.

На острие чувств

В завершение нашего небольшого путешествия внутрь нервной системы разберёмся в том, откуда берутся наши ощущения. Оказывается, здесь строение нервного окончания также имеет самое непосредственное отношение к процессу. Нервные окончания могут располагаться в тканях свободно, могут оканчиваться специальными сенсорными рецепторами, а могут «заключаться» в соединительнотканную капсулу.

Тактильные «граждане» располагаются в слоях соединительной ткани внутренних органов и кожи. Большинство из них – механорецепторы (тактильные, пластинчатые тельца), которые реагируют на какие-либо механические воздействия.

Например, тельца Руффини реагируют на растяжение кожи, тельца Пачини – на давление. Некоторые окончания в эпидермисе «заточены» под регистрацию изменений температуры (тепло – тельца Руффини, холод – колбы Краузе).

Есть даже такие рецепторы, которые могут определять изменения рН, рО2 и рСО2.

Поперечное сечение телец Руффини

Для суставов и мышц есть свои детекторы чувств. К ним относятся мышечные веретёна, сухожильные органы и чувствительные нервные окончания в капсуле суставов.

А дальше – только интереснее. Оставайтесь с нами!

Анна Хоружая

Читайте материалы нашего сайта в ВКонтактеЯндекс-Дзен и канале в Telegram, а также следите за новыми картинками дня в Instagram.

Источник: http://neuronovosti.ru/neuro-dlya-chaynikov-cells/

Тельца Фатера-Пачини и другие механорецепторы

Тельца руффини и колбы краузе

Рецепторный аппарат сформирован в результате эволюции и в человеческом организме представлен очень широко.

Механорецепция позволяет нам осязать предметы, различать температурные, вибрационные характеристики, представлять свое расположение в пространстве.

По этой причине их называют тактильными рецепторами кожи.

Что такое рецепторы?

В переводе с латинского языка глагол «recipere» означает «принимать». В этом и заключена биологическая роль рецепторов – прием, обработка и преобразование полученной информации.

С точки зрения эволюции — это очень важное приспособление.

Ведь среди многочисленных раздражителей очень сложно вычленить и обработать нужные стимулы, обладая тонко организованной нервной системой, способной работать только с потенциалами действия.

https://www.youtube.com/watch?v=6L9zkCKst4Q

Рецепторы являются важной составной частью анализаторных систем. Например, зрение. Первичное и едва ли не самое важно звено этой системы – так называемые палочки и колбочки сетчатки.

По морфологии — это видоизмененные нервные клетки. А по своей биологической и физиологической сути — это рецепторы.

Именно в них первично происходит восприятие раздражения и первичная обработка полученной информации из внешней среды.

[attention type=green]

Согласно классификации, рецепторы могут обрабатывать импульсы с поверхностей внутренних органов, стенок их слизистых. Это внутренние рецепторы (механорецепторы легких или, например, пластинчатые тельца поджелудочной железы).

[/attention]

Экстерорецепторы – следующая группа клеток, которые кодируют информацию, полученную извне. К ним относят механорецепторы. Стимулы – давление на рецепторные участки, их деформация либо смещение.

Функции механорецепторов и их виды

Как извне, так и изнутри организм человека испытывает воздействие различного рода раздражителей. Механорецепторы – одна из самых важных групп рецепторов, включающая разнородные клетки. Они преобразуют механические факторы в унифицированный нервный импульс с формированием потенциала действия.

Механорецепторы возбуждаются при действии следующих факторов:

  • свет;
  • давление;
  • сжатие;
  • температура;
  • звуковые волны;
  • вибрация.

Таким образом, суть работы описываемых клеточных структур любого анализатора сводится к следующим важным процессам:

  1. Раздражение клетки-рецептора различными стимулами.
  2. Преобразование энергии импульса извне или изнутри в потенциал действия.
  3. Так называемая эфферентная регуляция.

Среди механорецепторов выделяют первичночувствующие рецепторы. Все описанные выше процессы протекают в пределах одной и той же морфологической структуры (клетки). К ним можно отнести сердечную мускулатуру, эндотелиальные клетки сосудистой выстилки, рецепторы, расположенные в эпидермальном слое кожного покрова. Это очень распространенная группа.

Выделяют также вторичночувствующие рецепторы. К ним относят механорецепторы слухового и вестибулярного анализаторов. Раздражение происходит в одной клеточной структуре, в то время как формирование потенциала действия замыкается на другой.

Далее речь пойдет о клетках первого типа, ведь группа тактильных механорецепторов представлена намного шире.

Тельца Мейснера

Иное название этой гистологической структуры – осязательное тельце. Оно воспринимает механические колебания с частотой диапазона 30000-40000 Герц.

Морфология этого механорецептора несложная. Извне от дермы осязательное тельце отделено капсулой из соединительной ткани. Внутри расположены в форме зигзага безмиелиновые ветви дендритов нервных клеток. На них расположены глиоциты, не покрытые миелином. Относительно оси тельца Мейснера глиальные клетки расположены под прямым углом.

Тельца Мейснера реагируют на вибрацию, давление именно посредством глиоцитов. На последние действуют указанные механические факторы, затем раздражение передается на дендриты нервных клеток. По этим отросткам потенциал действия доходит  до следующих нейронов, формируя в конечном итоге ощущение давления (осязание) и вибрации.

Осязательные тельца Мейснера встречаются в следующих органах и тканях человеческого организма:

  • сосочковый слой дермы кожного покрова пальцев, подошв;
  • кожа области век;
  • ареолы сосков, а также сами соски;
  • красная кайма губ;
  • слизистая оболочка половых органов (большое скопление в так называемой точке G).

Распространенность и плотность телец Мейснера высока. Расположение относительно поверхности кожи перпендикулярное.

Тельца Меркеля

Эти клеточные структуры расположены несколько поверхностнее, чем тельца Мейснера. Локализация – базальный, шиповатый слои эпидермального покрова кожи. На поверхности выстилки волосяных луковиц их также достаточно много. Есть данные, что клетки Меркеля в эпидермисе безволосой части кожи представлены гораздо чаще, больше. На волосистой части головы, к примеру, их не так много.

Клетка содержит разветвляющиеся выросты в виде пальцев, они вплетаются в окружающие ее клеточные и тканевые структуры. Эта особенность позволяет воспринимать сигналы (легкое прикосоновение) с большой площади кожного покрова.

Иначе описываемые рецепторы называются дисками Меркеля (из-за визуальной схожести). Совокупность нескольких телец — это так называемая тактильная корпускула. В ней содержится до 50 дискоидных структур.

Происхождение клеток Меркеля – вопрос спорный. Чаще всего морфологи и цитологи сходятся на том, что это производные нейроэндокринной системы (APUD). Функция их заключена в участии в формировании тактильных ощущений (на легкое статическое прикосновение). Кроме того, учитывая происхождение, они стимулируют питание нервных волокон кожного покрова и его дериватов.

Тельца Руффини

Эта разновидность механорецепторов позволяет воспринимать чувство прикосновения. Расположение – папиллярный слой дермы. Кроме того, их можно обнаружить в поверхностных слоях подкожно-жировой клетчатки и жировой ткани.

По морфологии тельца Руффини напоминают колбу. Сердцевина заполнена безмиелиновыми волокнами, расположенными в основном спиралевидно. Следом идет пространство капсулы, отграниченное от внутренней колбы мембраной. В нем сосредоточены клеточные и волокнистые структуры, характерные для соединительной ткани. Они выполняют трофическую функцию для основных элементов сердцевины тельца Руффини.

[attention type=yellow]

Капсульное пространство заполнено межклеточной жидкостью. Следующий компонент —  соединительнотканная капсула. Она имеет слоистое строение, почему этот рецептор иногда называют луковицей Руффини. Количество слоев – около 4-5. Они состоят из четко ориентированных фиброцитов.

[/attention]

Кроме растяжения, позволяют принимать температурные импульсы. Это оправдывает их расположение в нижних слоях эпидермиса, в сосочковом слое дермы и подкожно-жировой клетчатке. Посредством работы луковиц Руффини происходит восприятие прикосновения, тепла.

Тельца Фаттера-Пачини

Иное название этой разновидности клеточных структур – пластинчатые тельца. Это связано с морфологическими особенностями. Установлено, что тельца Фатера-Пачини являются рецепторами, реагирующими на вибрационные раздражители.

Внешне эти структуры напоминают луковицу. Это связано со слоистым расположением соединительной ткани, окружающей нервные безмиелиновые окончания. Между слоями находится жидкость, по свойствам напоминающую ликвор. Функция тельца Пачини – реакция на давление и вибрацию.

Формирование нервного импульса является результатом сжатия клетки, которое вызывает скольжение слоев капсулы тельца друг относительно друга. Это раздражение улавливается нервными окончаниями и передается по афферентным путям на нейроны 1 уровня.

Анализаторы – Бионичка

Тельца руффини и колбы краузе

Внимательно прочитайте теоретический материал. Перед заполнением теста.

Анализатор – это совокупность нейронов, которую часто называют сенсорной системой. Любой анализатор имеет три отдела:

  • периферический – чувствительные нервные окончания (рецепторы), которые входят в состав органов чувств (зрение, слух, вкус, осязание);
  • проводниковый – нервные волокна, цепочка разных типов нейронов, проводящих сигнал (нервный импульс) от рецептора к центральной нервной системе;
  • центральный – участок коры головного мозга, анализирующий и преобразовывающий сигнал в ощущение.

Рис. 1. Отделы анализаторов.

Каждому специфичному анализатору соответствует определённый участок коры головного мозга, который называется корковым ядром анализатора.

Виды

Рецепторы, а соответственно и анализаторы, могут быть двух видов:

  • внешние (экстероцепторы) – располагаются около или на поверхности тела и воспринимают раздражители внешней среды (свет, тепло, влажность);
  • внутренние (интероцепторы) – находятся в стенках внутренних органов и воспринимают раздражители внутренней среды.

Рис. 2. Расположение центров восприятия в головном мозге.

Шесть типов внешнего восприятия описаны в таблице “Анализаторы человека”.

Анализатор

Рецепторы

Проводящие пути

Центральные отделы

Зрительный

Фоторецепторы сетчатки глаза

Зрительный нерв

Затылочная доля коры больших полушарий

Слуховой

Волосковые клетки спирального (кортиева) органа улитки

Слуховой нерв

Верхняя извилина височной доли

Вкусовой

Рецепторы языка

Языкоглоточный нерв

Передний отдел височной доли

Осязательный

Рецепторные клетки: – на голой коже – тельца Мейснера, залегающие в сосочковом слое кожи;

– на волосяной поверхности – рецепторы волосяного фолликула;

– вибрации – тельца Пачини

Скелетно-мышечные нервы, спиной, продолговатый, промежуточный мозг

Задняя центральная извилина теменной доли

Обонятельный

Рецепторы полости носа

Обонятельный нерв

Передний отдел височной доли

Температурный

Тепловые (тельца Руффини) и холодовые (колбы Краузе) рецепторы

Миелиновые (холод) и безмиелиновые (тепло) волокна

Задняя центральная извилина теменной доли

Рис. 3. Расположение рецепторов в коже.

К внутренним относят рецепторы давления, вестибулярный аппарат, кинестетические или двигательные анализаторы.

Мономодальные рецепторы воспринимают один тип раздражения, бимодальные – два типа, полимодальные – несколько типов. Например, мономодальные фоторецепторы воспринимают только свет, осязательные бимодальные – боль и тепло. К полимодальным относится подавляющее большинство болевых рецепторов (ноцицепторов).

Характерные особенности

Анализаторы, вне зависимости от типа, обладают рядом общих свойств:

  • высокая чувствительность к раздражителям, ограничивающаяся пороговой интенсивностью восприятия (чем ниже порог, тем выше чувствительность);
  • различность (дифференциация) чувствительности, позволяющая выделять раздражители по интенсивности;
  • адаптация, позволяющая приспосабливать уровень чувствительности к сильным раздражителям;
  • тренировка, проявляющаяся как в снижении чувствительности, так и в её повышении;
  • сохранение восприятия после прекращения действий раздражителя;
  • взаимодействие разных анализаторов друг с другом, позволяющее воспринимать полноту внешнего мира.

Примером особенности работы анализатора может служить запах краски. Люди с низким порогом чувствительности к запахам будут ощущать запах сильнее и активно реагировать (слезотечение, тошнота), чем люди с высоким порогом.

Сильный запах анализаторы будут воспринимать интенсивнее, чем другие окружающие запахи. Со временем запах не будет ощущаться резко, т.к. произойдёт адаптация. Если постоянно находиться в помещении с краской, то чувствительность притупится.

Однако выйдя из помещения на свежий воздух, некоторое время будет ощущаться, «мерещиться» запах краски.

Из статьи по биологии для 8 класса узнали об отделах, типах, строении и функциях анализаторов – системы, воспринимающей и проводящей сигналы внешней и внутренней среды. Анализаторы имеют общие особенности и выполняют функции проводников от источника раздражения до ЦНС.

Человек получает информацию об окружающей среде с помощью сенсорных систем, или анализаторов.

Сенсорная система (анализатор) — совокупность структур нервной системы, осуществляющих приём, обработку информации определённого вида и формирование ощущений.

Все анализаторы построены по единому принципу и состоят из трёх отделов: периферического, проводникового и центрального.

Периферический отдел представлен рецепторами.

Рецепторы — нервные окончания или чувствительные клетки, преобразующие внешний сигнал в нервные импульсы.

Проводниковый отдел доставляет информацию к головному мозгу и представлен чувствительными нервными волокнами.

Центральный отдел анализатора обеспечивает анализ поступившей информации и преобразование её в ощущения. Центральный отдел располагается в коре больших полушарий головного мозга.

[attention type=red]

Ощущения возникают только в том случае, если каждый из трёх отделов анализатора выполняет свои функции.

[/attention]

Пример:

слух человек может потерять не только из-за болезни уха, но также и при повреждении слухового нерва и слуховой зоны коры больших полушарий.

Часто используется понятие «органы чувств».

Орган чувств — это анатомическое образование, воспринимающее внешнее воздействие.

В состав органов чувств входят рецепторы и вспомогательные структуры. Так, орган зрения состоит из глазного яблока (в нём расположены зрительные рецепторы) и век, ресниц, слёзных желез (выполняют защитную функцию).

Источник: https://www.sites.google.com/a/tl-2.ru/bionicka2/8-klass/analizatory

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: