Температура плавления костей

Содержание
  1. Кальций
  2. Нахождение в природе
  3. Изотопы
  4. В горных породах и минералах
  5. Миграция в земной коре
  6. В биосфере
  7. Получение
  8. Физические свойства
  9. Применение
  10. Биологическая роль
  11. При какой температуре плавятся кости?
  12. Page 3
  13. Page 4
  14. Page 5
  15. Page 6
  16. Page 7
  17. Page 8
  18. Page 9
  19. Page 10
  20. Page 11
  21. Page 12
  22. Page 13
  23. Page 14
  24. Page 15
  25. Page 16
  26. Page 17
  27. Page 18
  28. Page 19
  29. 1
  30. 2
  31. 3
  32. 4
  33. 5
  34. 6
  35. При какой температуре плавится человек
  36. При какой температуре плавится медь
  37. Плавление в домашних условиях
  38. Предсказание температуры плавления (критерий Линдемана) [ править | править код ]
  39. Температура плавления металлов и сплавов с таблицей
  40. Способы плавления
  41. Процесс плавления
  42. Группы металлов по температуре плавления
  43. Таблицы плавления металлов и сплавов
  44. Таблица температуры плавления легкоплавких металлов и сплавов
  45. Таблица температуры плавления среднеплавких металлов и сплавов
  46. Таблица температуры плавления тугоплавких металлов и сплавов
  47. Температура плавления и кипения, в чем разница?
  48. Вместо заключения
  49. Кости человека: строение, состав их соединение и устройство суставов
  50. Общая характеристика костей человека
  51. Строение костей человека
  52. Структура кости: компактное и губчатое вещество
  53. Соединение костей человека
  54. Виды суставов

Кальций

Температура плавления костей
 

Название элемента происходит от лат. calx (в родительном падеже calcis) — «известь», «мягкий камень». Оно было предложено английским химиком Гемфри Дэви, в 1808 г. выделившим металлический кальций электролитическим методом.

Дэви подверг электролизу смесь влажной гашёной извести с оксидом ртути HgO на платиновой пластине, которая являлась анодом. Катодом служила платиновая проволока, погруженная в жидкую ртуть. В результате электролиза получалась амальгама кальция.

Отогнав из неё ртуть, Дэви получил металл, названный кальцием.

Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад. Вплоть до конца XVIII века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём — вещества сложные.

Нахождение в природе

Из-за высокой химической активности кальций в свободном виде в природе не встречается.

На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности (3-е среди металлов) после кислорода, кремния, алюминия и железа). элемента в морской воде — 400 мг/л.

Изотопы

Основная статья: Изотопы кальция

Кальций встречается в природе в виде смеси шести изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, среди которых наиболее распространённый — 40Ca — составляет 96,97 %. Ядра кальция содержат магическое число протонов: Z = 20. Изотопы 40
 20Ca20
и 48
20Ca28
являются двумя из пяти существующих в природе дважды магических ядер.

Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48Ca, самый тяжёлый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), испытывает двойной бета-распад с периодом полураспада (4,39 ± 0,58)⋅1019 лет.

В горных породах и минералах

Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате — анортите Ca[Al2Si2O8].

[attention type=yellow]

Довольно широко распространены такие минералы кальция, как кальцит CaCO3, ангидрит CaSO4, алебастр CaSO4·0.5H2O и гипс CaSO4·2H2O, флюорит CaF2, апатиты Ca5(PO4)3(F,Cl,OH), доломит MgCO3·CaCO3. Присутствием солей кальция и магния в природной воде определяется её жёсткость.

[/attention]

Осадочная порода, состоящая в основном из скрытокристаллического кальцита — известняк (одна из его разновидностей — мел). Под действием регионального метаморфизма известняк преобразуется в мрамор.

Миграция в земной коре

В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната:

 CaCO3 + H2O + CO2 ⇄ Ca(HCO3)2 ⇄ Ca2+ + 2HCO3−

(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).

Огромную роль играет биогенная миграция.

В биосфере

Соединения кальция находятся практически во всех животных и растительных тканях (см. ниже). Значительное количество кальция входит в состав живых организмов.

Так, гидроксиапатит Ca5(PO4)3OH, или, в другой записи, 3Ca3(PO4)2·Ca(OH)2 — основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др.

В живых тканях человека и животных 1,4—2 % Ca (по массовой доле); в теле человека массой 70 кг содержание кальция — около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Получение

Свободный металлический кальций получают электролизом расплава, состоящего из CaCl2 (75—80 %) и KCl или из CaCl2 и CaF2, а также алюминотермическим восстановлением CaO при 1170—1200 °C  4CaO + 2Al → CaAl2O4 + 3Ca

Физические свойства

Металл кальций существует в двух аллотропных модификациях. До 443 °C устойчив α-Ca с кубической гранецентрированной решеткой (параметр а = 0,558 нм), выше устойчив β-Ca с кубической объемно-центрированной решеткой типа α-Fe (параметр a = 0,448 нм). Стандартная энтальпия  ΔH0 перехода α → β составляет 0,93 кДж/моль.

При постепенном повышении давления начинает проявлять свойства полупроводника, но не становится полупроводником в полном смысле этого слова (металлом уже тоже не является).

При дальнейшем повышении давления возвращается в металлическое состояние и начинает проявлять сверхпроводящие свойства (температура сверхпроводимости в шесть раз выше, чем у ртути, и намного превосходит по проводимости все остальные элементы).

Уникальное поведение кальция похоже во многом на стронций (то есть параллели в периодической системе сохраняются).

Кальций — типичный щёлочноземельный металл. Химическая активность кальция высока, но ниже, чем более тяжёлых щёлочноземельных металлов.

Он легко взаимодействует с кислородом, углекислым газом и влагой воздуха, из-за чего поверхность металлического кальция обычно тускло-серая, поэтому в лаборатории кальций обычно хранят, как и другие щёлочноземельные металлы, в плотно закрытой банке под слоем керосина или жидкого парафина.

В ряду стандартных потенциалов кальций расположен слева от водорода. Стандартный электродный потенциал пары Ca2+/Ca0 −2,84 В, так что кальций активно реагирует с водой, но без воспламенения:

 Ca + 2H2O → Ca(OH)2 + H2↑

С активными неметаллами (кислородом, хлором, бромом, йодом) кальций реагирует при обычных условиях:

 2Ca + O2 → 2CaO Ca + Br2 → CaBr2

При нагревании на воздухе или в кислороде кальций воспламеняется и горит красным пламенем с оранжевым оттенком («кирпично-красным»). С менее активными неметаллами (водородом, бором, углеродом, кремнием, азотом, фосфором и другими) кальций вступает во взаимодействие при нагревании, например:

 Ca + H2 → CaH2 Ca + 6B → CaB6 3Ca + N2 → Ca3N2 Ca + 2C → CaC2 6Ca + P4 → 2Ca3P2 2Ca + Si → Ca2Si[attention type=red]

Кроме получающихся в этих реакциях фосфида кальция Ca3P2 и силицида кальция Ca2Si, известны также фосфиды кальция составов CaP и CaP5 и силициды кальция составов CaSi, Ca3Si4 и CaSi2.

[/attention]

Протекание указанных выше реакций, как правило, сопровождается выделением большого количества теплоты. Во всех соединениях с неметаллами степень окисления кальция +2. Большинство из соединений кальция с неметаллами легко разлагается водой, например:

 CaH2 + 2H2O → Ca(OH)2 + 2H2↑ Ca3N2 + 6H2O → 3Ca(OH)2 + 2NH3↑

Ион Ca2+ бесцветен. При внесении в пламя растворимых солей кальция пламя окрашивается в кирпично-красный цвет.

Такие соли кальция, как хлорид CaCl2, бромид CaBr2, йодид CaI2 и нитрат Ca(NO3)2, хорошо растворимы в воде. Нерастворимы в воде фторид CaF2, карбонат CaCO3, сульфат CaSO4, ортофосфат Ca3(PO4)2, оксалат CaC2O4 и некоторые другие.

Важное значение имеет то обстоятельство, что, в отличие от карбоната кальция CaCO3, кислый карбонат кальция (гидрокарбонат) Ca(HCO3)2 в воде растворим. В природе это приводит к следующим процессам.

Когда холодная дождевая или речная вода, насыщенная углекислым газом, проникает под землю и попадает на известняки, то наблюдается их растворение, а в тех местах, где вода, насыщенная гидрокарбонатом кальция, выходит на поверхность земли и нагревается солнечными лучами, протекает обратная реакция

 CaCO3 + CO2 + H2O ⇄ Ca(HCO3)2

Так в природе происходит перенос больших масс веществ. В результате под землёй могут образоваться огромные карстовые полости и провалы, а в пещерах образуются красивые каменные «сосульки» — сталактиты и сталагмиты.

Наличие в воде растворенного гидрокарбоната кальция во многом определяет вре́менную жёсткость воды. Вре́менной её называют потому, что при кипячении воды гидрокарбонат разлагается, и в осадок выпадает CaCO3. Это явление приводит, например, к тому, что в чайнике со временем образуется накипь.

Применение

Главное применение металлического кальция — это использование его как восстановителя при получении металлов, особенно никеля, меди и нержавеющей стали. Кальций и его гидрид используются также для получения трудно восстанавливаемых металлов, таких, как хром, торий и уран.

Сплавы кальция со свинцом применяются в некоторых видах аккумуляторных батарей и при производстве подшипников. Кальциевые гранулы используются также для удаления следов воздуха из электровакуумных приборов.

Чистый металлический кальций широко применяется в металлотермии при получении редкоземельных элементов.

[attention type=green]

Кальций широко применяется в металлургии для раскисления стали наряду с алюминием или в сочетании с ним.

[/attention]

Внепечная обработка кальцийсодержащими проволоками занимает ведущее положение в связи с многофакторностью влияния кальция на физико-химическое состояние расплава, макро- и микроструктуры металла, качество и свойства металлопродукции и является неотъемлемой частью технологии производства стали. В современной металлургии для ввода в расплав кальция используется инжекционная проволока, представляющая из себя кальций (иногда силикокальций или алюмокальций) в виде порошка или прессованного металла в стальной оболочке. Наряду с раскислением (удалением растворенного в стали кислорода) использование кальция позволяет получить благоприятные по природе, составу и форме неметаллические включения, не разрушающиеся в ходе дальнейших технологических операций.

Изотоп 48Ca — один из эффективных и употребительных материалов для производства сверхтяжёлых элементов и открытия новых элементов таблицы Менделеева. Это связано с тем, что кальций-48 является дважды магическим ядром, поэтому его устойчивость позволяет ему быть достаточно нейтроноизбыточным для лёгкого ядра; при синтезе сверхтяжёлых ядер необходим избыток нейтронов.

Биологическая роль

Основная статья: Кальций в живых организмах

Кальций — распространённый макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть находится в скелете и зубах. В костях кальций содержится в виде гидроксиапатита. Из различных форм карбоната кальция (извести) состоят «скелеты» большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.).

Ионы кальция участвуют в процессах свертывания крови, а также служат одним из универсальных вторичных посредников внутри клеток и регулируют самые разные внутриклеточные процессы — мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов.

Концентрация кальция в цитоплазме клеток человека составляет около 10−4 ммоль/л, в межклеточных жидкостях около 2,5 ммоль/л.

Потребность в кальции зависит от возраста. Для взрослых в возрасте 19—50 лет и детей 4—8 лет включительно дневная потребность (RDA) составляет 1000 мг, а для детей в возрасте от 9 до 18 лет включительно — 1300 мг в сутки . В подростковом возрасте потребление достаточного количества кальция очень важно из-за интенсивного роста скелета.

Однако по данным исследований в США всего 11 % девочек и 31 % мальчиков в возрасте 12—19 лет достигают своих потребностей. В сбалансированной диете большая часть кальция (около 80 %) поступает в организм ребёнка с молочными продуктами. Оставшийся кальций приходится на зерновые (в том числе цельнозерновой хлеб и гречку), бобовые, апельсины, зелень, орехи.

Всасывание кальция в кишечнике происходит двумя способами: через клетки кишечника (трансцеллюлярно) и межклеточно (парацелюллярно). Первый механизм опосредован действием активной формы витамина D (кальцитриола) и её кишечными рецепторами. Он играет большую роль при малом и умеренном потреблении кальция.

При большем содержании кальция в диете основную роль начинает играть межклеточная абсорбция, которая связана с большим градиентом концентрации кальция. За счёт чрезклеточного механизма кальций всасывается в большей степени в двенадцатиперстной кишке (из-за наибольшей концентрации там рецепторов в кальцитриолу).

[attention type=yellow]

За счёт межклеточного пассивного переноса абсорбция кальция наиболее активна во всех трёх отделах тонкого кишечника. Всасыванию кальция парацеллюлярно способствует лактоза (молочный сахар).

[/attention]

Усвоению кальция препятствуют некоторые животные жиры (включая жир коровьего молока и говяжий жир, но не сало) и пальмовое масло.

Содержащиеся в таких жирах пальмитиновая и стеариновая жирные кислоты отщепляются при переваривании в кишечнике и в свободном виде прочно связывают кальций, образуя пальмитат кальция и стеарат кальция (нерастворимые мыла).

В виде этого мыла со стулом теряется как кальций, так и жир.

Этот механизм ответственен за снижение всасывания кальция, снижение минерализации костей и снижение косвенных показателей их прочности у младенцев при использовании детских смесей на основе пальмового масла (пальмового олеина). У таких детей образование кальциевых мыл в кишечнике ассоциируется с уплотнением стула, уменьшением его частоты, а также более частым срыгиванием и коликами.

Концентрация кальция в крови из-за её важности для большого числа жизненно важных процессов точно регулируется, и при правильном питании и достаточном потреблении обезжиренных молочных продуктов и витамина D дефицита не возникает. Длительный дефицит кальция и/или витамина D в диете приводит к увеличению риска остеопороза, а в младенчестве вызывает рахит.

Избыточные дозы кальция и витамина D могут вызвать гиперкальцемию. Максимальная безопасная доза для взрослых в возрасте от 19 до 50 лет включительно составляет 2500 мг в сутки (около 340 г сыра Эдам).

Источник: https://chem.ru/kalcij.html

При какой температуре плавятся кости?

Температура плавления костей

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 3

ПОМОГИТЕ ПОЖАЛУЙСТА !!! НАДО СРОЧНО !!!1) Написать молекулярные , полные и сокращенные ионные уравнения реакций между растворами : а) хлорида бария и сульфата меди (2)б) нитрата серебра и соляной кислоты2)Написать молекулярные уравнения реакций , соответствующих сокращенным ионным :а) Mg + 2OH = Mg (OH)2

б) 2H + CO3 = H2O + CO2

Page 4

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 5

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 6

Запишите уравнения реакций между предложеннымивеществами, укажите тип каждой реакции. Назовите все вещества.

1.     Магний и хлор;

2.     Хлорид бария и сульфат лития;

3.     Оксид хрома (III)и алюминий;

4.     Литий и вода;

Page 7

укажите формулу обазованную слобой кислотой и сильным основанием?а) NaNO2 б)K2SO4 в)(NH4)2S г)СuBr2по катиону гидролизируется соль :а)сульфад натрия б)хлорид цинка в)нитрат лития г)бромид калиясоотнисите :тип гидролизаа) по катиону 1)нитрит амонияб) по аниону 2)сульфад меди (II)

в)по катиону и аниону 3)карбонат натрия

Page 8

Дорогие химики, помогите,пожалуйста, написать уравнения реакций по теме “Получение и свойства карбоновых кислот”.1. Ацетат натрия + 50-% раствор серной кислоты —>2. Нейтрализовать получившуюся уксусную кислоту раствором щелочи (я думаю, NaOH подойдет)3. Уксусная кислота + вода —>4.

Уксусная кислота + оксид меди (II) —->5. Проверить, окисляется ли муравьиная кислота аммиачным раствором оксида серебра (I) (составить уравнение реакции)6. Раствор мыла + соляная кислота (уравнение реакции)7. Проверить, растворяется ли получившийся осадок в растворе щелочи (уравнение + объясните данное явление)8.

[attention type=red]

Раствор мыла + хлорид кальция ( напишите уравнение + какое свойство мыла иллюстрируется данным опытом?)9. Составьте уравнение реакции образования сложного эфира из уксусной кислоты и этилового спирта.

[/attention]*Заданий много, но постарайтесь, пожалуйста, выполнить задание максимально качественно и полно.

Баллы хорошие, лучшее решение обязательно отмечу. Надеюсь на вашу помощь и поддержку :З

Page 9

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 10

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 11

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 12

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 13

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 14

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 15

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 16

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 17

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 18

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Page 19

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

0

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

1

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

2

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

3

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

4

Помогите с химиейЗапишите молекулярное и ионное уравнение реакций между:А) Гидроксид кальция и нитрат магнияБ) Гидроксидом калия и оксид азота 3В) Гидроксидом бария 2 и угольной кислотой

Очень срочно. Помогите, не нужно писать сделай сам, я не понимаю эту тему

5

1.Объясните,почему в термометрах чаще всего используют ртуть.2.Нить накаливания в лампах сделана из вольфрама.Объясните-почему.

3.Из 1г золота можно вытянуть тонкую нить длиной более 2км.На каком свойстве золота это основано?

6

Приближенное значение величины равно 48.точность приближения доходит до 0,5 .может ли точное значение данной величины

Источник: https://znanija.site/himiya/5995710.html

При какой температуре плавится человек

Температура плавления костей

Уже в древности люди добывали и плавили медь. Этот металл широко применялся в быту и служил материалом для изготовления различных предметов. Бронзу научились делать примерно 3 тыс. лет назад. Из этого сплава делали хорошее оружие.

Популярность бронзы быстро распространялась, так как металл отличался красивым внешним видом и прочностью. Из него делали украшения, орудия охоты и труда, посуду.

Благодаря небольшой температуре плавления меди человек быстро освоил ее производство.

При какой температуре плавится медь

Плавления происходит, когда из твердого состояния металл переходит в жидкое. Каждый элемент имеет собственную температуру плавления. Многое зависит от примесей в металле.

Обычная температура плавления меди — 1083 ° C. Когда добавляется олово, температура снижается до 930- 1140 ° C. Температура плавления зависит здесь от содержания в сплаве олова.

В сплаве купрума с цинком плавление происходит при 900- 1050 ° C .

Читать также:  Как обрезать автомобильное стекло

При нагреве любого металла разрушается его кристаллическая решетка. По мере нагревания повышается температура плавления, но затем выравнивается по достижении определенного предела температуры. В этот момент и плавится металла. Полностью расплавляется, и температура повышается снова.

Когда металл охлаждается, температура снижается, в определенный момент остается на прежнем уровне, пока металл не затвердеет полностью. После полного затвердевания температура снижается опять.

Это демонстрирует фазовая диаграмма, где отображен температурный процесс с начала плавления до затвердения. При нагревании разогретая медь при 2560 ° C начинает закипать. Кипение подобно кипению жидких веществ, когда выделяется газ и появляются пузырьки на поверхности.

В момент кипения при максимально больших температурах начинается выделение углерода, образующегося при окислении.

Плавление в домашних условиях

Благодаря низкой температуре плавления древние люди могли расплавлять купрум на костре и использовать металл для изготовления различных изделий.

Для расплавки меди в домашних условиях понадобится:

  • древесный уголь;
  • тигель и специальные щипцы для него;
  • муфельная печь;
  • бытовой пылесос;
  • горн;
  • стальной крюк;
  • форма для плавления.

Процесс течет поэтапно, металл помещается в тигель, а затем размещается в муфельной печи. Выставляется нужная температура, а наблюдение за процессом осуществляется через стеклянное оконце. В процессе в емкости с Cu появится окисная пленка, которую нужно устранить — открыть окошко и отодвинуть в сторону стальным крюком.

При отсутствии муфельной печи расплавить медь можно автогеном. Плавление пойдет, если ест нормальный доступ воздуха. Паяльной лампой расплавляется латунь и легкоплавкая бронза. Пламя должно охватить весь тигель.

Если под рукой ничего из перечисленных средств нет, можно использовать горн, установленный на слой древесного угля. Для повышения Т можно использовать пылесос, включенный в режим выдувания, но шланг должен иметь металлический наконечник, хорошо, если с зауженным концом, так струя воздуха будет тоньше.

Температура плавления бронзы и латуни, как температура плавления меди и алюминия — невысоки.

Сегодня в промышленных условиях в чистом виде Cu не используется. В ее составе содержится много примесей: никель, железо, мышьяк, сурьма, другие элементы.

Качество продукта определяется наличием содержания в процентах примесей в сплаве (не более 1%). Важные показатели — тепло- и электропроводность.

Благодаря пластичности, малой Т плавления и гибкости медь широко используется во многих отраслях промышленности.

Читать также:  Станок для производства брикетов из опилок цена

Другие варианты определений к слову :

2. Первый металл в таблице Менделеева.

3. Металл, который мягче воска и легче дерева.

7. «Литос» по-гречески «камень», а какой металл получил шведский химик Арфедсон самым первым из царства камней?

8. Батискаф и атомная бомба, пиротехника и лечение психозов – вот области применения этого химического элемента.

9. Своё название этот химический элемент получил из-за того, что был обнаружен в камнях.

10. Этот щелочной металл был воспет большим любителем химии Куртом Кобэйном.

Температура плавления (обычно совпадает с температурой кристаллизации) — температура, при которой твёрдое кристаллическое тело совершает переход в жидкое состояние и наоборот. При температуре плавления вещество может находиться как в жидком, так и в твёрдом состоянии.

[attention type=green]

При подведении дополнительного тепла вещество перейдёт в жидкое состояние, а температура не будет изменяться, пока всё вещество в рассматриваемой системе не расплавится.

[/attention]

При отведении лишнего тепла (охлаждении) вещество будет переходить в твёрдое состояние (застывать), и, пока оно не застынет полностью, его температура не изменится.

Температура плавления/отвердевания и температура кипения/конденсации считаются важными физическими свойствами вещества. Температура отвердевания совпадает с температурой плавления только для чистого вещества. На этом свойстве основаны специальные калибраторы термометров для высоких температур.

Так как температура застывания чистого вещества, например олова, стабильна, достаточно расплавить и ждать, пока расплав не начнёт кристаллизоваться.

В это время, при условии хорошей теплоизоляции, температура застывающего слитка не изменяется и в точности совпадает с эталонной температурой, указанной в справочниках.

Смеси веществ не имеют температуры плавления/отвердевания вовсе и совершают переход в некотором диапазоне температур (температура появления жидкой фазы называется точкой солидуса, температура полного плавления — точкой ликвидуса).

Поскольку точно измерить температуру плавления такого рода веществ нельзя, применяют специальные методы (ГОСТ 20287 и ASTM D 97).

Но некоторые смеси (эвтектического состава) обладают определенной температурой плавления, как чистые вещества.

Аморфные (некристаллические) вещества, как правило, не обладают чёткой температурой плавления. С ростом температуры вязкость таких веществ снижается, и материал становится более жидким.

[attention type=yellow]

Поскольку при плавлении объём тела изменяется незначительно, давление мало влияет на температуру плавления.

[/attention]

Зависимость температуры фазового перехода (в том числе и плавления, и кипения) от давления для однокомпонентной системы даётся уравнением Клапейрона-Клаузиуса.

Температуру плавления при нормальном атмосферном давлении (101 325 Па, или 760 мм ртутного столба) называют точкой плавления.

Читать также:  Выбор цепи для бензопилы

Предсказание температуры плавления (критерий Линдемана) [ править | править код ]

Попытка предсказать точку плавления кристаллических материалов была предпринята в 1910 году Фредериком Линдеманом ( англ. ) .

Идея заключалась в наблюдении того, что средняя амплитуда тепловых колебаний увеличивается с увеличением температуры.

Плавление начинается тогда, когда амплитуда колебаний становится достаточно большой для того, чтобы соседние атомы начали частично занимать одно и то же пространство.

Критерий Линдемана утверждает, что плавление ожидается, когда среднеквадратическое значение амплитуды колебаний превышает пороговую величину.

Температура плавления кристаллов достаточно хорошо описывается формулой Линдемана [1] :

T λ = x m 2 9 ℏ 2 M k B θ r s 2 Mk_ heta r_>

где r s — средний радиус элементарной ячейки, θ — температура Дебая, а параметр x m для большинства материалов меняется в интервале 0,15-0,3.

Температура плавления – Расчет

Формула Линдемана выполняла функцию теоретического обоснования плавления в течение почти ста лет, но развития не имела из-за низкой точности.

В 1999г. И.В. Гаврилиным было получено новое выражение для расчёта температуры плавления:

где Тпл – температура плавления; DHпл – скрытая теплота плавления; N – скрытая теплота плавления; k – константа Больцмана.

[attention type=red]

Впервые получено исключительно компактное выражение (1) для расчёта температуры плавления металлов, связывающее эту температуру с известными физическими константами: скрытой теплотой плавления, числом Авогадро и константой Больцмана.

[/attention]

Точность расчетов по (1) можно оценить по данным таблицы.

Температура плавления некоторых металлов. Расчет по (1)

2,55,513,54,44,183,121,71,78,7Тпл, К

876185711791428140610515835292945Тпл, К

933219015171811172813576925052890

По этим данным, точность расчетов Тпл меняется от 2 до 30%, что в расчетах такого рода вполне приемлемо.

Формула (1) выведена как одно из следствий новой теории плавления и кристаллизации, опубликованной в 2000г.[1].

[1]- Гаврилин И.В. Плавление и кристаллизация металлов и сплавов. Изд. ВлГУ. Владимир. 2000. 256 с.

Источник: https://morflot.su/pri-kakoj-temperature-plavitsja-chelovek/

Температура плавления металлов и сплавов с таблицей

Температура плавления костей

Каждый металл и их сплавы имеют различные свойства. Одно из таких свойств — температура плавления. Каждый металл плавится при разной температуре. Все что нужно для перевода вещества из твёрдого состояния в жидкое — источник тепла, который будет разогревать металл до определенной температуры.

Так как у каждого металла температура плавления различная, можно определить менее устойчивый металл к температуре и более.

Так самый легкоплавкий металл — ртуть, он готов перейти в жидкое состоянии при температуре равно 39 градусов по цельсию.

А вот вольфрам( из чего собственно и сделаны вольфрамовые электроды для аргоновой сварки), расплавится только по достижению температуры в 3422 градусов цельсии.

Что касается сплавов, таких как сталь и прочих, определить температуру, при которой те будут плавиться, довольно сложно. Вся сложность в их составе… Так как состав разный, то и температура плавления различная. Как правило, для сплавов указывается диапазон температур, при которых он будет плавиться. Вообще, температура плавления металлов интересная тема.

Способы плавления

Способов плавления двавнешний и внутренний. Каждый из способов по своему эффективен.

Во время применений внешнего способа плавления, на металл или сплав воздействуют теплом с наружи, на пример в печи.

А в случае с внутренним, через металл пропускается высокий разряд электрического тока или воздействуют электромагнитным полем.

На фото индукционный электромагнитный нагреватель металла для кузнечного дела.

Процесс плавления

Во время нагрева металла, в его кристаллической решетке начинается повышенное движение молекул. Они начинают двигаться с высокой(относительно) амплитудой, что увеличивает расстояние, между кристалами самой решетки. Образуются дефекты( пустота между атомами), что и является началом процесса плавления. Вот так происходить плавление металла при определенных температурах.

Группы металлов по температуре плавления

Все металлы можно разделить на три группы в связи с температурой их плавления. Ниже можно наблюдать список групп.

  • Тугоплавкие (от 1600°C и выше)
  • Среднеплавкие (от 600°C до 1600°C)
  • Легкоплавкие (до 600°C)

Выше вы можете наблюдать три группы плавления металлов по необходимой температуре. Какие это металлы конкретно, вы сможете посмотреть в таблице.

Таблицы плавления металлов и сплавов

Ниже, представлены таблицы, для наглядного знакомства с температурами плавления тех или иных металлов и их сплавов.

Таблица температуры плавления легкоплавких металлов и сплавов

Таблица с температурами плавления легкоплавких металлов

НазваниеОбозначениеПлавлениеКипение
ОловоSn232°C2600°C
СвинецPb327°C1750°C
ЦинкZn420°C907°C
КалийK63,6°C759°C
НатрийNa97,8°C883°C
РтутьHg38,9°C356.73°C
ЦезийCs28,4°C667.5°C
ВисмутBi271,4°C1564°C
ПолонийPo254°C962°C
КадмийCd321,07°C767°C
РубидийRb39,3°C688°C
ГаллийGa29,76°C2204°C
ИндийIn156,6°C2072°C
ТаллийTl304°C1473°C
ЛитийLi18,05°C1342°C

Таблица температуры плавления среднеплавких металлов и сплавов

Таблица температур плавления среднеплавких металлов и сплавов

НазваниеОбозначениеt Плавленияt Кипения
АлюминийAl660°C2519°C
ГерманийGe937°C2830°C
МагнийMg650°C1100°C
СереброAg960°C2180°C
ЗолотоAu1063°C2660°C
МедьCu1083°C2580°C
ЖелезоFe1539°C2900°C
КремнийSi1415°C2350°C
НикельNi1455°C2913°C
БарийBa727°C1897°C
БериллийBe1287°C2471°C
НептунийNp644°C3901,85°C
ПротактинийPa1572°C4027°C
ПлутонийPu640°C3228°C
АктинийAc1051°C3198°C
КальцийCa842°C1484°C
РадийRa700°C1736,85°C
КобальтCo1495°C2927°C
СурьмаSb630,63°C1587°C
СтронцийSr777°C1382°C
УранU1135°C4131°C
МарганецMn1246°C2061°C
Константин1260°C
ДуралюминСплав алюминия, магния, меди и марганца650°C
ИнварСплав никеля и железа1425°C
ЛатуньСплав меди и цинка1000°C
НейзильберСплав меди, цинка и никеля1100°C
НихромСплав никеля, хрома, кремния, железа, марганца и алюминия1400°C
СтальСплав железа и углерода1300°C – 1500°C
ФехральСплав хрома, железа, алюминия, марганца и кремния1460°C
ЧугунСплав железа и углерода1100°C – 1300°C

Таблица температуры плавления тугоплавких металлов и сплавов

Таблица температур плавления тугоплавких металлов и сплавов

НазваниеОбозначениеt Плавления °Ct Кипения °C
ВольфрамW34205555
ТитанTi16803300
ИридийIr24474428
ОсмийOs30545012
ПлатинаPt1769,33825
РенийRe31865596
ХромCr19072671
РодийRh19643695
РутенийRu23344150
ГафнийHf22334603
ТанталTa30175458
ТехнецийTc21574265
ТорийTh17504788
ВанадийV19103407
ЦирконийZr18554409
НиобийNb24774744
МолибденMo26234639
Карбиды гафния3890
Карбиды ниобия3760
Карбиды титана3150
Карбиды циркония3530
ПалладийPd1 554 °C2980 °C

Температура плавления и кипения, в чем разница?

Для тех, кому интересно или нужно узнать, в чем разница температурой плавления металла и кипением, расскажу в двух словах.

И так, температура плавления та, при которой металл находится на грани перехода из твердого состояния в жидкое. Проще говоря — начало процесса плавления.

Но тогда что же такое температура кипения? А это та температура, при которой давление пара расплавленного металла такое же, как и давление внешней среды.

Вместо заключения

Только что, вы познакомились с температурой плавления металлов и сплавов, лицезрели таблицы этих самых температур. Если данная статья оказалась для вас полезной, не забудьте поделиться её в социальных сетях, сделать это просто с помощью специальных кнопок ниже. А так же, нас очень радуют ваши комментарии(чуточку намёка). Всем добра коллеги!

Источник: https://welding-territory.ru/temperatura-plavlenija-metallov-i-splavov-s-tablicej/

Кости человека: строение, состав их соединение и устройство суставов

Температура плавления костей

Каждая кость человека представляет собой сложный орган: она занимает определенное положение в теле, имеет свою форму и строение, выполняет свойственную ей функцию. В образовании кости принимают участие все виды тканей, но преобладает костная ткань.

Общая характеристика костей человека

Хрящ покрывает только суставные поверхности кости, снаружи кость покрыта надкостницей, внутри расположен костный мозг. Кость содержит жировую ткань, кровеносные и лимфатические сосуды, нервы.

Костная ткань обладает высокими механическими качествами, ее прочность можно сравнить с прочностью металла. Химический состав живой кости человека содержит: 50% воды, 12,5% органических веществ белковой природы (оссеин), 21,8% неорганических веществ (главным образом фосфат кальция) и 15,7% жира.

Виды костей по форме разделяют на:

  • Трубчатые (длинные — плечевая, бедренная и др.; короткие — фаланги пальцев);
  • плоские (лобная, теменная, лопатка и др.);
  • губчатые (ребра, позвонки);
  • смешанные (клиновидная, скуловая, нижняя челюсть).

Строение костей человека

Основной структурой единицей костной ткани является остеон, который виден в микроскоп при малом увеличении. Каждый остеон включает от 5 до 20 концентрически расположенных костных пластинок.

Они напоминают собой вставленные друг в друга цилиндры. Каждая пластинка состоит из межклеточного вещества и клеток (остеобластов, остеоцитов, остеокластов). В центре остеона имеется канал — канал остеона; в нем проходят сосуды.

Между соседними остеонами расположены вставочные костные пластинки.

Строение кости человека

Костную ткань образуют остеобласты, выделяя межклеточное вещество и замуровываясь в нем, они превращаются в остеоциты — клетки отростчатой формы, неспособные к митозу, со слабо выраженными органеллами. Соответственно в сформировавшейся кости содержатся в основном остеоциты, а остеобласты встречаются только в участках роста и регенерации костной ткани.

Наибольшее количество остеобластов находится в надкостнице — тонкой, но плотной соединительно-тканной пластинке, содержащей много кровеносных сосудов, нервных и лимфатических окончаний. Надкостница обеспечивает рост кости в толщину и питание кости.

Остеокласты содержат большое количество лизосом и способны выделять ферменты, чем можно объяснить растворение ими костного вещества. Эти клетки принимают участие в разрушении кости. При патологических состояниях в костной ткани количество их резко увеличивается.

Остеокласты имеют значение и в процессе развития кости: в процессе построения окончательной формы кости они разрушают обызвествленный хрящ и даже новообразованную кость, «подправляя» ее первичную форму.

Структура кости: компактное и губчатое вещество

На распиле, шлифах кости различают две ее структуры — компактное вещество (костные пластинки расположены плотно и упорядоченно), расположенное поверхностно, и губчатое вещество (костные элементы расположены рыхло), лежащее внутри кости.

Компактное и губчатое вещество кости

Такое строение костей в полной мере соответствует основному принципу строительной механики — при наименьшей затрате материала и большой легкости обеспечить максимальную прочность сооружения. Это подтверждается и тем, что расположение трубчатых систем и основных костных балок соответствует направлению действия силы сжатия, растяжения и скручивания.

Структура костей представляет собой динамическую реактивную систему, изменяющуюся в течение всей жизни человека. Известно, что у людей, занимающихся тяжелым физическим трудом, компактный слой кости достигает относительно большого развития. В зависимости от изменения нагрузки на отдельные части тела могут изменяться расположение костных балок и структура кости в целом.

Соединение костей человека

Все соединения костей можно разделить на две группы:

  • Непрерывные соединения, более ранние по развитию в филогенезе, неподвижные или малоподвижные по функции;
  • прерывные соединения, более поздние по развитию и более подвижные по функции.

Между этими формами существует переходная — от непрерывных к прерывным или наоборот — полусустав.

Строение сустава человека

Непрерывное соединение костей осуществляется посредством соединительной ткани, хрящей и костной ткани (кости собственно черепа). Прерывное соединение костей, или сустав, является более молодым образованием соединения костей. Все суставы имеют общий план строения, включающий суставную полость, суставную сумку и суставные поверхности.

Суставная полость выделяется условно, так как в норме между суставной сумкой и суставными концами костей пустоты не существует, а находится жидкость.

Суставная сумка охватывает суставные поверхности костей, образуя герметическую капсулу. Суставная сумка состоит из двух слоев, наружный слой которой переходит в надкостницу. Внутренний слой выделяет в полость сустава жидкость, играющую роль смазки, обеспечивая свободное скольжение суставных поверхностей.

Виды суставов

Суставные поверхности сочленяющихся костей покрыты суставным хрящом. Гладкая поверхность суставных хрящей способствует движению в суставах.

Суставные поверхности по форме и величине очень разнообразны, их принято сравнивать с геометрическими фигурами.

Отсюда и название суставов по форме: шаровидные (плечевой), эллипсовидные (луче-запястный), цилиндрические (луче-локтевой) и др.

Так как движения сочленяющихся звеньев совершаются вокруг одной, двух или многих осей, суставы принято также делить по количеству осей вращения на многоосные (шаровидный), двуосные (эллипсовидный, седловидный) и одноосные (цилиндрический, блоковидный).

В зависимости от количества сочленяющихся костей суставы делятся на простые, в которых соединяется две кости, и сложные, в которых сочленяется больше двух костей.

Оцените, пожалуйста, статью. Мы старались:) (29 4,48 из 5)
Загрузка…

Источник: https://animals-world.ru/stroenie-i-sostav-kostej-cheloveka/

Сам себе врач
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: