- 2.3.4. Органические вещества клетки. Нуклеиновые кислоты
- Дезоксирибонуклеиновая кислота (ДНК)
- Рибонуклеиновая кислота (РНК)
- Аденозинтрифосфорная кислота – АТФ
- Часть А
- Часть В
- Часть С
- Биология. Человек. 9 класс (гдз) – Приложение к § 1
- Рис. 24 Строение митохондрии
- Нуклеиновые кислоты: информационные молекулы. Урок 9
- Нуклеиновые кислоты – полимерные молекулы
- Днк – хранитель генетической информации
- Роли РНК в клетке
- Другие нуклеотиды
- Нуклеиновые кислоты: решение задач
- Углевод днк и рнк таблица
- I .Организационная часть:
- II. Контроль уровня знаний:
- IV. Изложение нового материала
- V. Обобщение и систематизация
- VI. Закрепление нового материала:
- Сравнение ДНК и РНК: таблица. ДНК и РНК: структура
- Нуклеиновая кислота: что это такое?
- Сходства и различия ДНК и РНК: пентозы
- Принципы строения ДНК
- Виды и особенности строения РНК
- Какие функции выполняет ДНК?
- Какие функции выполняет РНК?
- Выводы и сравнительная таблица
2.3.4. Органические вещества клетки. Нуклеиновые кислоты
Нуклеиновые кислоты были открыты в 1868 г. швейцарским ученым Ф. Мишером. В организмах существует несколько видов нуклеиновых кислот, которые встречаются в различных органоидах клетки – ядре, митохондриях, пластидах.
К нуклеиновым кислотам относятся ДНК, и-РНК, т-РНК, р-РНК.
Дезоксирибонуклеиновая кислота (ДНК)
– линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных (соответствующих друг другу по конфигурации) цепей. Пространственная структура молекулы ДНК была смоделирована американскими учеными Джеймсом Уотсоном и Френсисом Криком в 1953 г.
Мономерами ДНК являются нуклеотиды.
Каждый нуклеотидДНК состоит из пуринового (А – аденин или Г – гуанин) или пиримидинового (Т – тимин или Ц – цитозин) азотистого основания, пятиуглеродного сахара – дезоксирибозы и фосфатной группы.
Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина – цитозин. Пара А – Т соединена двумя водородными связями, а пара Г – Ц – тремя.
При репликации (удвоении) молекулы ДНК водородные связи рвутся и цепи расходятся и на каждой из них синтезируется новая цепь ДНК. Остов цепей ДНК образован сахарофосфатными остатками.
Последовательность нуклеотидов в молекуле ДНК определяет ее специфичность, а также специфичность белков организма, которые кодируются этой последовательностью.
Эти последовательности индивидуальны и для каждого вида организмов, и для отдельных особей.
Пример: дана последовательность нуклеотидов ДНК: ЦГА – ТТА – ЦАА.На информационной РНК (и-РНК) будет синтезирована цепь ГЦУ – ААУ – ГУУ, в результате чего выстроится цепочка аминокислот: аланин – аспарагин – валин.
При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а, следовательно изменится и белок, кодируемый данным геном. Изменения в составе нуклеотидов или их последовательности называются мутацией.
Рибонуклеиновая кислота (РНК)
– линейный полимер, состоящий из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар – рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.
Синтезируются РНК в ядре.
Процесс называется транскрипция — это биосинтез молекул РНК на соответствующих участках ДНК; первый этап реализации генетической информации в клетке, в процессе которого последовательность нуклеотидов ДНК «переписывается» в нуклеотидную последовательность РНК.
Молекулы РНК формируются на матрице, которой служит одна из цепей ДНК, последовательность нуклеотидов в которой определяет порядок включения рибонуклеотидов по принципу комплементарности. РНК-полимераза, продвигаясь вдоль одной из цепей ДНК, соединяет нуклеотиды в том порядке, который определен матрицей. Образовавшиеся молекулы РНК называют транскриптами.
Виды РНК.
Матричная или информационная РНК. Синтезируется в ядре при участии фермента РНК-полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Ее функция – снятие информации с ДНК и передача ее к месту синтеза белка – на рибосомы. Составляет 5% РНК клетки.
Рибосомная РНК – синтезируется в ядрышке и входит в состав рибосом.
Составляет 85% РНК клетки.
Транспортная РНК – транспортирует аминокислоты к месту синтеза белка. Имеет форму клеверного листа и состоит из 70—90 нуклеотидов.
Аденозинтрифосфорная кислота – АТФ
– представляет собой нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты, в двух из которых запасается большое количество энергии.
При отщеплении одного остатка фосфорной кислоты освобождается 40 кДж/моль энергии. Способность запасать такое количество энергии делает АТФ ее универсальным источником.
Синтез АТФ происходит в основном в митохондриях.
Часть А
А1. Мономерами ДНК и РНК являются1) азотистые основания 2) фосфатные группы 3) аминокислоты 4) нуклеотиды
А2. Функция информационной РНК:
1) удвоение информации 2) снятие информации с ДНК3) транспорт аминокислот на рибосомы 4) хранение информации
А3. Укажите вторую цепь ДНК, комплементарную первой: АТТ – ГЦЦ – ТТГ
1) УАА – ТГГ – ААЦ 3) УЦЦ – ГЦЦ – АЦГ2) ТАА – ЦГГ – ААЦ 4) ТАА – УГГ – УУЦ
А4. Подтверждением гипотезы, предполагающей, что ДНК является генетическим материалом клетки, служит:
1) количество нуклеотидов в молекуле2) индивидуальность ДНК3) соотношение азотистых оснований (А = Т, Г= Ц)4) соотношение ДНК в гаметах и соматических клетках (1:2)
А5. Молекула ДНК способна передавать информацию благодаря:
1) последовательности нуклеотидов 2) количеству нуклеотидов3) способности к самоудвоению 4) спирализации молекулы
А6. В каком случае правильно указан состав одного из нуклеотидов РНК
1) тимин – рибоза – фосфат 2) урацил – дезоксирибоза – фосфат3) урацил – рибоза – фосфат
4) аденин – дезоксирибоза – фосфат
Часть В
В1. Выберите признаки молекулы ДНК1) Одноцепочная молекула 2) Нуклеотиды – АТУЦ3) Нуклеотиды – АТГЦ 4) Углевод – рибоза5) Углевод – дезоксирибоза 6) Способна к репликации
В2. Выберите функции, характерные для молекул РНК эукариотических клеток
1) распределение наследственной информации2) передача наследственной информации к месту синтеза белков3) транспорт аминокислот к месту синтеза белков4) инициирование репликации ДНК5) формирование структуры рибосом
6) хранение наследственной информации
Часть С
С1. Установление структуры ДНК позволило решить ряд проблем. Какие, по вашему мнению, это были проблемы и как они решились в результате этого открытия?
С2. Сравните нуклеиновые кислоты по составу и свойствам.
Источник: https://biology100.ru/index.php/materialy-dlya-podgotovki/kletka-kak-biologicheskaya-sistema/2-3-4-organicheskie-veshchestva-kletki-nukleinovye-kisloty
Биология. Человек. 9 класс (гдз) – Приложение к § 1
Таблица 1. Примерный химический состав клетки бактерии и клетки млекопитающих
Химическое соединение | Доля от общей массы клетки, %Бактерия | Доля от общей массы клетки, % Клетка млеко-питающего |
Н2О | 70 | 70 |
Неорганические ионы (Na+, К+, Мg2+, Са2+, Сl— и т. д.) | — | 1 |
Низкомолекулярные продукты обмена веществ | 3 | 3 |
Белки | 15 | 18 |
РНК | 6 | 1,1 |
ДНК | 1 | 0,25 |
Липиды | 2 | 5 |
Полисахариды | 2 | 2 |
Общий объем клетки | 2 • 10~12см3 | 4 • 10~9см3 |
Таблица 2a. Классификация органелл клетки по функции
Общие функции | Специальные функции |
Митохондрии Пластиды Комплекс Гольджи Эндоплазматическая сеть(ЭПС) Лизосомы Микротельца Рибосомы Клеточный центр или центриоли МикротрубочкиМикрофиламенты | Реснички (эпителий трахеи и бронхов) Жгутики Ложноножки Микроворсинки (эпителиальные клетки кишечника) Нейрофибриллы Миофибриллы ТонофибриллыСинаптические пузырьки |
Таблица 2b. Классификация органелл клетки по строению
Немембранные структуры | Мембранные структуры |
Рибосомы Клеточный центр Микротрубочки Микрофиламенты Реснички Жгутики Нейрофибриллы МиофибриллыТонофибриллы | а) Одномембранные Комплекс Гольджи ЭПС Лизосомы Микротельца Синаптические пузырьки Вакуольб) Двумембранные МитохондрииПластиды |
Таблица 3. Основные виды РНК
Вид РНК | Приблизитель- ное число разных видовв клетках | Приблизитель- ная длина (числонуклеотидов) | Распростра- ненность* |
Транспортная РНК (тРНК) | 80-100 | 75-90 | П, Э |
Рибосомная 5S РНК (рРНК) | 1-2 | 120 | П, Э |
Рибосомная 5,8S РНК (рРНК)> | 1 | 158 | П |
Рибосомпая 16S РНК (рРНК) | 1 | 1600 | П |
Рибосомная 23S РНК (рРНК) | 1 | 3200 | П |
Рибосомная 18S РНК (рРНК) | 1 | 1900 | Э |
Рибосомная 28S РНК (рРНК) | 1 | 5000 | Э |
Матричная РНК (мРНК) | Тысячи | Варьирует | П, Э |
Гетерогенная ядерная РНК(гяРНК) | Тысячи | Варьирует | Э |
Малая цитоплазма- тическая РНК(мцРНК) | Десятки | 90-330 | П, Э |
Малая ядерная РНК (мяРНК) | Десятки | 58-220 | Э |
* П — прокариоты, Э — эукариоты.
Таблица 4. Отличия ДНК от РНК.
Признаки | ДНК | РНК |
Строение макромолекулы | Двойная правозакрученная спираль | Одинарная спираль |
Мономеры | Дезоксирибонуклеотид | Рибонуклеотид |
Состав нуклеотида: Углевод – Азотистое основание –Остаток фосф. кислоты. | Дезоксирибоза А, Т, Г, ЦЕсть | |
Свойства молекулы | Способна к репликации, стабильная | Не способна к репликации, лабильная |
Местоположение в клетке | Ядро, митохондрии, пластиды | Ядро, цитоплазма, митохондрии, пластиды |
Локализация в ядре | Хромосомы | Ядро, Ядрышко |
Функции | Хранение наследственной информации, т.е. информации о синтезе белка (последовательности аминокислот), синтезе ДНК и РНК | и-РНК составляет от 1 до 10% от всех РНК, соответствует длине гена, передает информацию от ДНК к месту синтеза белка. Три нуклеотида, расположенные на и-РНК, кодирующие одну аминокислоту, называются кодоном.р-РНК составляет 80% всех РНК, состоит из 3-5 тысяч нуклеотидов, образует субъединицы рибосом. Митохондриальная и пластидная р-РНК входит в состав рибосом этих органелл.т-РНК составляет около 10% всех РНК, состоит из 80-100 нуклеотидов, переносит аминокислоты к месту синтеза белка. Три нуклеотида, расположенные на вершине «клеверного листа» т-РНК, наз.антикодоном. |
Рис. 24 Строение митохондрии
Рис. 25. Схема строения клетки как осмотической системы:
— осмотическое давление,
Р — тургорное давление,
—Р — противодавление клеточной стенки
Источник: https://bacan.3dn.ru/index/prilozhenie_k_1/0-77
Нуклеиновые кислоты: информационные молекулы. Урок 9
Для стабильной работы клетки нужно, чтобы в ней постоянно продуцировалось большое количество разнообразных белков. Информация о белках хранится в клетке, даже о тех из них, которые данный организм не унаследовал.
«Банком сведений» являются нуклеиновые кислоты, их можно сравнить с дисками наших компьютеров, на которые мы складываем всё, что нужно запомнить.
Все живые организмы способны сберегать наследственную информацию и передавать её потомкам при помощи нуклеиновых кислот.
Впервые нуклеиновые кислоты были открыты швейцарским биохимиком Ф. Мишером в 1868 г. Он выделил их из сперматозоидов лосося и ядер лейкоцитов человека. От слова «ядро» (лат. nucleus) и произошло название «нуклеиновые кислоты». Позже они были обнаружены вне ядер и в клетках всех живых организмов, в том числе безъядерных, но название так и сохранилось.
Фридрих Мишер
Существует две разновидности нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота), которые обеспечивают сохранение информации и РНК (рибонуклеиновая кислота), принимающие участие в процессе генной эксперессии и биосинтеза белка.
Нуклеиновые кислоты обладают уникальным свойством, они способны служить шаблоном для получения точной копии самих себя. Именно это позволяет передавать генетическую информацию в процессе деления клеток во время размножения организмов.
Репликация ДНК
Нуклеиновые кислоты – полимерные молекулы
Нуклеиновые кислоты — самые крупные нерегулярные полимерные органические молекулы, носящие название полинуклеотидов. Обычно ДНК намного крупнее РНК. Их мономерами являются нуклеотиды (нуклеозиды, дезоксинуклеозиды и др.). Каждый из них состоит из трёх компонентов:
- пентозы, или пятиуглеродного сахара (рибоза в РНК и дезоксирибоза в ДНК);
- фосфатной группы – остатка фосфорной кислоты (—PO 4 -);
- азотистого основания.
Строение нуклеотида
Азотистые основания — это ароматические гетероциклические соединения, производные пиримидина или пурина. Нуклеотиды имеют пять основных типов азотистых оснований. Двухкольцевые пуриновые: аденин (Аde) и гуанин (Gua).
Каждое из них содержится как в ДНК, так и в РНК.
Остальные три основания представляют собой однокольцовые молекулы, производные пиримидина: цитозин (Cyt — есть как в ДНК, так и в РНК), тимин (Thy — только в ДНК), урацил (Ura — только в РНК).
Аденин и рибоза образуют нуклеозид аденозин (A), производные других азотистых оснований носят названия: гуанозин (G, Г), уридин (U, У), тимидин (Т), цитидин (C, Ц). При соединении азотистых оснований с дезоксирибозой образуются дезоксинуклеозиды. Все нуклеозидфосфаты объединяют под общим названием — нуклеотиды.
[attention type=yellow]Строение пурина и пуриновых азотистых основанийСтроение пиримидина и пиримидиновых азотистых оснований
[/attention]Нуклеиновые кислоты образуются путём реакции обезвоживания (конденсации, или дегидрации) между фосфатной группой одного нуклеотида и гидроксильной группой пентозы другого нуклеотида. Так получается фосфодиэфирная связь, объединяющая два углевода через фосфат.В молекуле нуклеотида азотистое основание присоединено к первому атому углерода пентозы, а остаток фосфорной кислоты — к пятому. Получающаяся полинуклеотидная цепь полярна, она имеет два конца:
- 5′ (пять-штрих положение) — углеродный атом в пятичленном моносахариде — рибозе или дезоксирибозе;
- 3´ (три-штрих положение) — гидроксильная группа, взятая от углевода (ОН).
Эти концы в двойной спирали ДНК соединяются через фосфатную группу по типу голова-хвост (3′ к 5′) по принципу комплементарности, азотистыми основаниями внутрь спирали. Такая ориентация цепей называется антипараллельной.
Днк – хранитель генетической информации
Организмы используют расстановку нуклеотидов ДНК для кодирования информации, указывающей аминокислотную последовательность первичной структуры их белков. Этот способ похож на то, как мы кодируем слова в предложении при помощи букв.
Предложение, написанное на русском языке, состоит из комбинации 33 букв алфавита в определённом порядке; код молекулы ДНК состоит из комбинации четырёх типов нуклеотидов в специфической последовательности: А, T, Г, Ц.
ДНК в организмах содержится в виде двух цепей, обёрнутых в виде спирали вокруг друг друга и вместе вокруг общей оси, либо в линейной форме, либо кольцевой у большинства прокариот, а также в хлоропластах и митохондриях эукариот.
Исключение – одноцепочечная молекула ДНК некоторых фагов — вирусов, поражающих бактериальные клетки. Две нити ДНК соединены связями-перемычками, как винтовая лестница ступенями. Такая структура молекулы называется двойной спиралью. Каждый шаг винтовой лестницы ДНК состоит из пары оснований.
Основание одной цепи притягивается водородной связью к основанию другой цепи.
Строение ДНК
Правила спаривания возникают из наиболее стабильной конфигурации водородного скрепления между двумя основаниями: пары аденина с тимином двумя водородными связями (в ДНК) или с урацилом (в РНК) и пары цитозина с гуанином — тремя водородными связями.
Основания, которые участвуют в сопряжении, дополняют друг друга, это свойство носит название комплементарности. Если известна последовательность оснований одной цепи ДНК, то благодаря специфичности их соединения, становится известна структура её партнёра — второй цепи.
Схема строения ДНК
В клетках эукариот ДНК дополнительно комплектуется с белками для формирования структур, называемых хромосомами. Это структуры более высокого порядка, которые влияют на функцию ДНК, поскольку участвуют в контроле за экспрессией генов.
Определение размеров молекул ДНК стало возможным только после изобретения методов электронной микроскопии, ультрацентрифугирования, электрофореза.
Расшифровка структуры ДНК имеет свою предысторию. В 1950 г. американский ученый Э. Чаргафф и его коллеги, исследуя состав молекулы ДНК, установили следующие закономерности, впоследствии названные правилами Чаргаффа.
- Количество адениловых нуклеотидов в молекуле ДНК равно количеству тимидиловых (А = Т), а количество гуаниловых — количеству цитидиловых (Г = Ц).
- Количество пуриновых азотистых оснований равно количеству пиримидиновых (А + Г = Т + Ц).
- Суммарное количество адениловых и цитидиловых нуклеотидов равно суммарному количеству тимидиловых и гуаниловых нуклеотидов (А + Ц = Т + Г), что следует из первого правила.
Это открытие способствовало установлению пространственной структуры ДНК и определению ее роли в передаче наследственной информации от одного поколения другому. В 1953 г.
на основании правил Чаргаффа и данных о пространственной структуре молекулы ДНК, полученных английским биофизиком М. Уилкинсом, американский ученый Дж. Уотсон и англичанин Ф. Крик предложили трехмерную модель структуры ДНК, которая получила название «двойной спирали».
За разработку модели молекулы ДНК Дж. Уотсон, Ф. Крик и М. Уилкинс в 1962 г. были удостоены Нобелевской премии.
Параметры двойной спирали ДНК
Роли РНК в клетке
Рибонуклетновые кислоты подобны ДНК, но имеет несколько основных химических различий.
- Она содержит дисахарид рибозу, связанный с гидроксильной группой (в ДНК гидроксильную группу заменяет атом водорода);
- В молекуле РНК используется урацил вместо тимина. Урацил имеет сходную с тимином структуру, за исключением того, что один из его углеродов не имеет метильной группы (- CH3 ).
- РНК производится путём транскрипции с участка ДНК, не образует двойной спирали, но содержит короткие участки со спаренными основаниями. Это приводит к тому, что при двумерном изображении она напоминает шпильки и петли, форму кленового листа (у тРНК).
Все виды РНК синтезируются на определенных участках одной из цепей ДНК. Такой синтез получил название матричного, так как молекула ДНК является матрицей (т. е. образцом, моделью) для синтеза молекул РНК.
Роль РНК в клетке разнообразна:
- она несёт информацию в виде матричной, или информационной РНК (мРНК, или иРНК). Матричные РНК наиболее разнообразны по структуре и размерам. Одна молекула содержит информацию об одном белке. В ходе синтеза белка на рибосомах она служит матрицей, поэтому биосинтез белка относится к матричным процессам. иРНК составляет 3-5% всех РНК клетки;
- входит в состав рибосомы в форме рибосомальной РНК (рРНК). рРНК составляет 80% всех РНК клетки. В соединении с белками они образуют одномембранные органоиды рибосомы, и участвуют в синтезе белков из аминокислот;
- переносит аминокислоты в виде трансферной, или транспортной РНК (тРНК) составляет около 15 % всех клеточных РНК. Молекулы тРНК сравнительно небольшие (в среднем состоят из 80 нуклеотидов). Благодаря формированию внутримолекулярных водородных связей молекула тРНК приобретает характерную пространственную структуру, называемую клеверным листом.
В последнее время у РНК были обнаружены ферментативные функции, а отдельная её форма включает регуляцию экспрессии генов.
Другие нуклеотиды
В дополнение к служению мономерами в ДНК и РНК нуклеотиды играют важные роли в жизни клетки. Они являются основой для синтеза целого ряда органических веществ. Два нуклеотида могут быть связаны через фосфатные группировки в динуклеотид. К этой группе соединений относятся коферменты:
- НАДФ+ (NADP+);
- КоА (CoA);
- флавин ФАД (FAD).
Также есть жизненно-важные нуклеотиды, являющиеся компонентами энергетических реакций. Например, аденин является ключевым компонентом молекулы аденозинтрифосфата (АТФ), энергетической валюты клетки.
Клетки используют АТФ в качестве источника энергии во всех процессах: чтобы перенести вещества через мембрану, соединить или расщепить молекулы, передвигать мышцами, жгутиками и ресничками и т. д.
АТФ – это универсальный (для всех живых организмов) источник и переносчик энергии клетки.
Структура аденозинтрифосфорной кислоты
Solon
Молекула АТФ состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты.
Остатки фосфорных кислот соединены между собой высокоэнергетическими связями (макроэргическими). Отрыв остатка фосфорной кислоты происходит в процессе гидролиза, при этом выделяется большое количество энергии – 40 кДж/моль.
Процесс отсоединения фосфатной группы называется реакцией дефосфорелирования.
После гидролитического отщепления от АТФ одной фосфатной группы образуется аденизиндифосфатная кислота (АДФ):
АТФ + Н2О → АДФ + Н3РО4 + 40 кДж
[attention type=red]АДФ может подвергаться дальнейшему гидролизу с отщеплением еще одной фосфатной группы и выделением второй «порции» энергии. При этом АДФ преобразуется в аденозинмонофосфорную кислоту (АМФ):
[/attention]АДФ + Н2О → АМФ + Н3РО4 + 40 кДж
Обратный процесс — синтез АТФ — происходит в результате присоединения к молекуле АДФ остатка фосфорной кислоты (реакция фосфорилирования). Этот процесс осуществляется за счет энергии, высвобождающейся при окислении органических веществ (глюкозы, высших карбоновых кислот и др.). Для образования 1 моль АТФ из АДФ должно быть затрачено не менее 40 кДж энергии:
АДФ + Н3РО4 + 40 кДж → АТФ + Н2О.
АТФ чрезвычайно быстро обновляется. У человека, например, каждая молекула АТФ расщепляется и вновь синтезируется около 2400 раз в сутки, поэтому средняя продолжительность ее «жизни» — менее 1 мин. Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах, частично в гиалоплазме.
Нуклеиновые кислоты: решение задач
Задача 1.
В молекуле ДНК содержится 17% аденина. Определите, сколько (в %) в этой молекуле содержится других оснований.
Решение:
По первому правилу Чаргаффа А=Т, Г=Ц. В задаче дано А=17%, значит и тимина 17%. Всего тимина и гуанина 17+17=34%. Оставшиеся 66% делятся на гуанин и цитидин поровну. Г=33% и Ц=33%.
Ответ: в этой молекуле ДНК содержится:
Тимидина — 17%;
Гуанина — 33%;
Цитидина — 33%.
Задача 2.
Участок гена имеет следующее строение, состоящее из последовательности нуклеотидов: ЦГГ ЦГЦ ТЦА ААА ТЦГ …
Укажите строение соответствующего участка белка, информация о котором содержится в данном гене. Как отразится на строении белка удаление из гена четвёртого нуклеотида?
Генетический код
Решение:
Используя принцип комплементарности (в ДНК: А=Т, Г=Ц) соединения оснований водородными связями и таблицу генетического кода:
Цепь ДНК | ЦГГ | ЦГЦ | ТЦА | ААА | ТЦГ |
иРНК | ГЦЦ | ГЦГ | УГУ | УУУ | АГЦ |
Цепь белка из аминркислот | Ала | Ала | Сер | Фен | Сер |
При удалении из гена четвёртого нуклеотида – Ц, произойдут заметные изменения – уменьшится количество и состав аминокислот в белке.
ДНК | ЦГГ | ГЦТ | ЦАА | ААТ | ЦГ |
иРНК | ГЦЦ | ЦГА | ГУУ | УУА | ГЦ |
белок | Ала | Арг | Вал | Лей | — |
Задача 3.
Какую длину имеет участок ДНК, кодирующий синтез инсулина, который содержит 51 аминокислоту в двух цепях, если один нуклеотид занимает 3,4 А° (ангстрема) цепи ДНК? 1 А°=0,1 нм (нанометра)=0,0001 мкм (микрометра)=0,000 0001 мм=0,000 000 000 01 м.
Решение
1) 51Х3=153 (нуклеотида) – так как каждая аминокислота кодируется тремя нуклеотидами.
2) 153 Х3,4 = 520,2 (А°)
Ответ: участок ДНК равен 520,2 А°
Подготовка к ЕГЭ, решение задач
Источник: https://tvoiklas.ru/nukleinovie-kisloti/
Углевод днк и рнк таблица
Учебные цели:
- углубление и обобщение знаний о строении и значении нуклеиновых кислот.
- формирование знаний об энергетическом веществе клетки – АТФ
Знать:Нуклеиновые кислоты. ДНК – химический состав, строение, удвоение ДНК, биологическая роль. РНК, АТФ – структура, синтез, биологические функции.
Уметь:составлять схемы цепочек ДНК и РНК по принципу комплементарности.
Задачи урока:
- Образовательные: ввести понятие нуклеиновых кислот, раскрыть особенности их состава и строения, функций, познакомить с азотистыми основаниями и пространственной организацией ДНК и РНК, основными видами РНК, определить черты сходства и различия между РНК и ДНК, сформировать понятие об энергетическом веществе клетки – АТФ, изучить строение и функции этого вещества.
- Развивающие: развивать умения сравнивать, оценивать, составлять общую характеристику нуклеиновых кислот, развитие воображения, логическое мышление, внимание и память.
- Воспитывающие: воспитывать дух соревнования, коллективизма, точность и быстроту ответов; осуществлять эстетическое воспитание, воспитание правильного поведения на уроке, профориентация.
Вид занятий: комбинированный урок – 80 минут.
Методы и методические приемы: рассказ с элементами беседы, демонстрация.
Оборудование: рисунки учебника, таблицы, модель ДНК, доска.
Оснащение занятий:
- тестовые задания;
- карточки для индивидуального опроса.
I .Организационная часть:
- проверка присутствующих;
- проверка аудитории и группы к занятию;
- запись в журнале.
II. Контроль уровня знаний:
тестовый контроль: Приложение 1.
IV. Изложение нового материала
План изложения материала:
- История изучения нуклеиновых кислот.
- Строение и функции.
- Состав, нуклеотиды.
- Принцип комплементарности.
- Структура ДНК.
- Функции.
- Репликация ДНК.
- РНК – состав, строение, виды, функции.
- АТФ – строение и функции.
ДНК
Какое вещество является носителем наследственной информации? Какие особенности его строения обеспечивают многообразие наследственной информации и ее передачу?
В апреле 1953 года великий датский физик Нильс Бор получил письмо от американского ученого Макса Дельбрюка, где он писал:»Потрясающие вещи происходят в биологии. Мне кажется, что Джеймс Уотсон сделал открытие, сравнимое с тем, что сделал Резерфорд в 1911 году (открытие атомного ядра)».
Джеймс Дьюи Уотсон родился в США в 1928 году. Еще студентом Чикагского университета он занялся самой актуальной тогда проблемой в биологии – ролью генов в наследственности. В 1951 году, приехав на стажировку в Англию, в Кембридж, он знакомится с Френсисом Криком.
Френсис Крик почти на 12 лет старше Уотсона. Он родился в 1916 году и по окончании Лондонского колледжа работал в Кембриджском университете.
В конце 19 века известно, что в ядре находятся хромосомы и они состоят из ДНК и белка. Знали, что ДНК передает наследственную информацию, но главное оставалось тайной. Как же работает такая сложная система? Решить эту задачу можно было, только узнав устройство загадочной ДНК.
Уотсон и Крик должны были придумать такую модель ДНК, которая соответствовала бы рентгеновской фотографии.
[attention type=green]Моррису Уилкинсу удалось “сфотографировать” молекулу ДНК с помощью рентгеновских лучейПосле 2-х лет кропотливой работы ученые предложили изящную и простую модель ДНКПотом еще 10 лет после этого открытия ученые разных стран проверяли догадки Уотсона и Крика и, наконец, вердикт был вынесен: “Все верно, ДНК устроена именно так!” Уотсон, Крик и Моррис Уилкинс получили за это открытие в 1953 году Нобелевскую премию.
[/attention]ДНК – полимер.
Актуализация знаний: Что такое полимер?
Что такое мономер?
Мономерами ДНК являются нуклеотиды, которые состоят из:
- Азотистого основания
- Сахара дезоксирибозы
- Остатка фосфорной кислоты
Зарисовать схему нуклеотида на доске.
В молекуле ДНК обнаружены различные азотистые основания:
- Аденин (А), обозначим это азотистое основание
- Тимин (Т), обозначим это азотистое основание
- Гуанин (Г), обозначим это азотистое основание
- Цитозин (Ц), обозначим это азотистое основание
Вывод, что нуклеотидов – 4, и они отличаются только азотистыми основаниями.
Цепочка ДНК состоит из чередующихся нуклеотидов, связанных ковалентной связью: сахар одного нуклеотида и остаток фосфорной кислоты – другого нуклеотида. В клетке обнаружено не просто ДНК, состоящее из одной нити, а более сложное образование. В этом образовании две нити нуклеотидов связанные азотистыми основаниями (водородными связями) по принципу комплементарности.
Можно предположить, что получающаяся цепочка ДНК сворачивается в спираль из-за разного количества водородных связей между азотистыми основаниями разных цепочек и таким образом принимает самую выгодную форму. Такая структура достаточно прочная, разрушить ее трудно. И, тем не менее, это происходит в клетке регулярно.
В качестве вывода составляется опорный конспект:
- НУКЛЕИНОВЫЕ КИСЛОТЫ
- ПОЛИМЕРЫ
- ДНК – двойная спираль
- Крик, Уотсон – 1953,
- Нобелевская премия
- комплементарность
Функции:
- Хранение наследственной информации
- Воспроизведение наследственной информации
- Передача наследственной информации
РНК
Рибонуклеиновая кислота (РНК), также линейный полимер, но гораздо более короткий. Основания РНК комплементарны основаниям ДНК, но в молекуле РНК однооснование – тимин (Т) – заменено на урацил (У) и вместо дезоксирибозы использована просто рибоза, имеющая на один атом кислорода больше. Кроме того, РНК – одноцепочечная структура.
Природа создала три основных вида молекул РНК.
Молекулы, считывающие информацию с ДНК, называются информационными РНК (и-РНК). Такая молекула быстро соединяется с рибосомой, непродолжительное время работает как матрица (поэтому называется еще и матричной, или м-РНК), «износившись», разваливается, и на ее место встает новая молекула и-РНК. Этот процесс идет непрерывно на протяжении всей жизни клетки.
Молекулы РНК другого типа имеют гораздо меньшие размеры и разделены на 20 разновидностей в соответствии с количеством разных аминокислот, входящих в белки. Каждая молекула этого типа с помощью определенного фермента соединяется с одной из 20 аминокислот и доставляет ее к рибосоме, уже соединенной с и-РНК. Это – транспортная РНК (т-РНК).
Наконец, в рибосомах есть своя, рибосомная, РНК (р-РНК), не несущая генетической информации, но входящая в состав рибосомсом.
Учащиеся самостоятельно составляют опорный конспект по РНК
РНК – одиночная цепочка
А, У, Ц, Г – нуклеотиды
Виды РНК –
Функции:
Биосинтез белка
Ученые выяснили, что каждая молекула тела использует особое излучение, самые сложные вибрации издает молекула ДНК. Внутренняя “музыка” сложна и разнообразна и, что самое удивительное, в ней четко прослеживаются определенные ритмы. Преобразованные компьютером в графическую картинку, они являют собой завораживающее зрелище.
Можно следить за ними часами, месяцами, годами – все время “оркестр” будет исполнять вариации на знакомую тему.
Играет он не для собственного удовольствия, а на благо организма: ритм, заданный ДНК и “подхваченный” белками и другими молекулами, лежит в основе всех биологических связей, составляет нечто вроде каркаса жизни; нарушение ритма влечет за собой старение и болезнь.
[attention type=yellow]У молодых этот ритм более энергичный, поэтому они любят слушать рок или джаз, с возрастом белковые молекулы теряют свой ритм, поэтому более взрослые люди любят слушать классику. Классическая музыка совпадает с ритмом ДНК (академик Российской академии В.Н. Шабалин изучал это явление).
[/attention]Можно дать совет: Начинай утро с хорошей мелодии и проживешь дольше!
АТФ.
Аденозинтрифосфорная кислота. Универсальный биологический аккумулятор энергии. Высококалорийное клеточное «топливо». Содержит 2 макроэргические связи. Макроэргическими называются соединения, в химических связях которых запасена энергия в форме, доступной для использования в биологических процессах.
АТФ (нуклеотид) состоит:
- азотистое основание
- углевод,
- 3 молекулы Н3РО4
Макроэргические связи
- АТФ + Н2О —► АДФ + Ф + Е (40 к Дж/ моль)
- АДФ + Н2О —► АМФ + Ф + Е (40 к Дж/ моль)
Энергетическая эффективность двух макроэргических связей составляет 80 к Дж/моль. АТФ образуется в митохондриях клеток животных и хлоропластах растений Энергия АТФ используется на движение, биосинтез, деление и др. Средняя продолжительность жизни 1 молекулы АТФ менее 1 мин, т.к. она расщепляется и восстанавливается 2400 раз в сутки.
V. Обобщение и систематизация
Фронтальный опрос:
- Объясните, что такое нуклеиновые кислоты?
- Какие виды НК вы знаете?
- Являются ли НК полимерами?
- Каков состав нуклеотида ДНК?
- Каков состав нуклеотида РНК?
- В чем сходство и различие между нуклеидами РНК и ДНК?
- АТФ – постоянный источник энергии для клетки. Его роль можно сравнить с ролью аккумулятора. Объясните, в чем заключается это сходство.
- Какое строение имеет АТФ?
VI. Закрепление нового материала:
Решить задачу:
Одна из цепей фрагмента молекулы ДНК имеет следующее строение: Г- Г-Г-А -Т-А-А-Ц-А-Г-А-Т
а) Укажите строение противоположной цепи
б) Укажите последовательность нуклеотидов в молекуле и – РНК, построенной на этом участке цепи ДНК.
ТЕСТ – Приложение 2.
Задание: составить синквейн.
ДНКхранит, передаетдлинная, спиралеобразная, закрученная1953 год Нобелевская премия
полимер
Источник: https://naturalpeople.ru/uglevod-dnk-i-rnk-tablica/
Сравнение ДНК и РНК: таблица. ДНК и РНК: структура
В предложенной вашему вниманию статье мы предлагаем изучить и построить сравнительную таблицу ДНК и РНК. Для начала необходимо сказать, что есть специальный раздел биологии, который занимается вопросами хранения, реализации и передачи наследственной информации, его название – молекулярная биология. Именно эту область мы и затронем далее.
Речь пойдет о полимерах (высокомолекулярных органических соединениях), образованных из нуклеотидов, которые и имеют название – нуклеиновые кислоты.
Эти соединения выполняют очень важные функции, одна из которых – хранение информации об организме.
Для того чтобы сравнить ДНК и РНК (таблица будет представлена в самом конце статьи), необходимо знать, что всего выделяют два вида нуклеиновых кислот, участвующих в биосинтезе белка:
- дезоксирибонуклеиновую, которую мы чаще встречаем в виде аббревиатуры – ДНК;
- рибонуклеиновую (или сокращенно, РНК)
Нуклеиновая кислота: что это такое?
Для того чтобы составить таблицу сравнения ДНК и РНК, необходимо более подробно познакомиться с данными полинуклеотидами. Начнем с общего вопроса. И ДНК, и РНК – это нуклеиновые кислоты. Как говорилось ранее, они образуются из остатков нуклеотидов.
Эти полимеры можно обнаружить абсолютно в любой клеточке организма, так как именно на их плечи возложена большая обязанность, а именно:
- хранение;
- передача;
- реализация наследственности.
Теперь очень коротко осветим основные их химические свойства:
- хорошо растворяются в воде;
- практически не поддаются растворению в органических растворителях;
- чувствительны к изменениям температуры;
- если молекулу ДНК выделить каким-либо возможным образом из природного источника, то можно наблюдать фрагментацию при механических действиях;
- фрагментирование происходит ферментами под названием нуклеазы.
Сходства и различия ДНК и РНК: пентозы
В таблице сравнения ДНК и РНК важно отметить одно очень важное сходство между ними – наличие в составе моносахаридов. Важно заметить, что каждая нуклеиновая кислота имеет отдельные их формы. Деление нуклеиновых кислот на ДНК и РНК происходит в результате того, что они обладают различными пентозами.
Так, например, в составе ДНК мы можем обнаружить дезоксирибозу, а в РНК – рибозу. Обратите внимание на тот факт, что при втором атоме углерода в дезоксирибозе нет кислорода. Ученые сделали следующее предположение – отсутствие кислорода имеет следующее значение:
- оно укорачивает связи С2 и С3;
- добавляет прочности молекуле ДНК;
- создает условия для укладки массивной молекулы в ядре.
Итак, всего выделяют пять азотистых оснований:
- А (аденин);
- Г (гуанин);
- Ц (цитозин);
- Т (тимин);
- У (урацил).
Важно отметить, что именно эти крошечные частички являются кирпичиками наших молекул. Именно в них заключена вся генетическая информация, а если быть более точными, то в их последовательности. В ДНК мы можем встретить: А, Г, Ц и Т, а в РНК – А, Г, Ц и У.
Азотистые основания – это большая часть нуклеиновых кислот. Помимо пяти перечисленных, встречаются и другие, но это бывает крайне редко.
Принципы строения ДНК
Еще одна важная особенность – наличие четырех уровней организации (вы сможете это увидеть на картинке). Как уже стало понятно, первичная структура – это цепочка нуклеотидов, при этом соотношение азотистых оснований подчиняется некоторым законам.
Вторичная структура – двойная спираль, состав каждой цепи которой специфичен для вида. Остатки фосфорной кислоты мы можем обнаружить снаружи спирали, а азотистые основания располагаются внутри.
Далее идет суперспирализованная структура. Помимо сплетения двух цепей, они наматываются на гистоны (для большей компактности). Гистоны – это специальные белки, которые делятся на пять классов.
Последним уровнем выступает хромосома. Представьте, что Эйфелева башня помещается в спичечный коробок, вот так уложена молекула ДНК в хромосоме. Важно заметить еще и то, что хромосома может состоять из одной хроматиды или двух.
Поговорим, прежде чем составить таблицу сравнения ДНК и РНК, о структуре РНК.
Виды и особенности строения РНК
Для сравнения сходства ДНК и РНК (таблицу вы сможете увидеть в последнем параграфе статьи), разберем разновидности последних:
- Прежде всего, тРНК (или транспортная) – одноцепочная молекула, которая выполняет функции транспортировки аминокислот и синтеза белка. Ее вторичной структурой является “клеверный лист”, а третичная изучена крайне мало.
- Информационная или матричная (мРНК) – перенос информации от молекулы ДНК к месту синтеза белка.
- И последняя – рРНК (рибосомная). Как уже стало понятно из названия, содержится в рибосомах.
Какие функции выполняет ДНК?
Сравнивая ДНК и РНК, невозможно упустить вопрос выполняемых функций. В итоговой таблице эта информация обязательно будет отражена.
Итак, не сомневаясь ни секунды, мы можем утверждать, что в маленькой молекуле ДНК запрограммирована вся генетическая информация, способная контролировать каждый наш шаг. Сюда относятся:
- здоровье;
- развитие;
- продолжительность жизни;
- наследственные болезни;
- сердечно-сосудистые заболевания и пр.
Представьте, что мы выделили все молекулы ДНК из одной клетки человеческого организма и разложили их в ряд. Как вы думаете, какая длина цепочки получится? Многие подумают, что миллиметры, но это не так.
Длина данной цепи будет составлять целых 7,5 сантиметров. Невероятно, но почему мы тогда клетку не можем разглядеть без мощного микроскопа? Все дело в том, что молекулы очень сильно спрессованы.
Вспомните, мы в статье уже говорили о размерах Эйфелевой башни.
А какие же все-таки функции выполняют ДНК?
- Являются носителями генетической информации.
- Воспроизводят и передают информацию.
Какие функции выполняет РНК?
Для более точного сравнения ДНК и РНК, предлагаем рассмотреть функции, выполняемые вторыми. Ранее уже говорилось, что выделяется три типа РНК:
- РРНК выполняет функцию структурной основы рибосомы, помимо этого они взаимодействуют с другими видами РНК в процессе синтеза белка и принимают участие при сборке полипептидной цепи.
- Функция мРНК – матрица для биосинтеза белка.
- ТРНК связывают аминокислоты и переносят их в рибосому для синтеза белка, кодируют аминокислоты, расшифровывают генетический код.
Выводы и сравнительная таблица
Нередко школьникам дают задание по биологии или химии – сравнить ДНК и РНК. Таблица в этом случае будет необходимым помощником. Все, что было сказано ранее в статье, вы сможете увидеть здесь в сжатой форме.
Признак | ДНК | РНК |
Структура | Две цепи. | Одна цепь. |
Полинуклеотидная цепь | Цепи правозакручены относительно друг друга. | Может иметь различные формы, все зависит от типа. Для примера возьмем тРНК, имеющую форму кленового листа. |
Локализация | В 99% локализация в ядре, однако можно встретить в хлоропластах и митохондриях. | Ядрышки, рибосомы, хлоропласты, митохондрии, цитоплазма. |
Мономер | Дезоксирибонуклеотиды. | Рибонуклеотиды. |
Нуклеотиды | А, Т, Г, Ц. | А, Г, Ц, У. |
Функции | Хранение наследственной информации. | МРНК переносит наследственную информацию, рРНК выполняет структурную функцию, мРНК, тРНК и рРНК участвуют в синтезе белка. |
Несмотря на то что наша сравнительная характеристика получилась очень краткой, мы смогли охватить все аспекты строения и функций рассматриваемых соединений. Эта таблица сможет послужить хорошей шпаргалкой на экзамене или просто памяткой.
Источник: https://FB.ru/article/371575/sravnenie-dnk-i-rnk-tablitsa-dnk-i-rnk-struktura